Generators and relations in groups and geometries : [proceedings of the NATO Advanced Study Institute on Generators and Relations in Groups and Geometries, Castelvecchio Pascoli (Lucca), Italy, April 1-14, 1990]
著者
書誌事項
Generators and relations in groups and geometries : [proceedings of the NATO Advanced Study Institute on Generators and Relations in Groups and Geometries, Castelvecchio Pascoli (Lucca), Italy, April 1-14, 1990]
(NATO ASI series, Series C . Mathematical and physical sciences ; v. 333)
Kluwer Academic, c1991
大学図書館所蔵 全39件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Editors: A. Barlotti, E.W. Ellers, P. Plaumann, K. Strambach
"Published in cooperation with NATO Scientific Affairs Division."
Include bibliographical references and index
内容説明・目次
内容説明
Every group is represented in many ways as an epimorphic image of a free group. It seems therefore futile to search for methods involving generators and relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into central collineations, supplies valuable information on the geometric and algebraic structure. This mode of investigation has gained momentum since the end of last century. The tradition of geometric-algebraic interplay brought forward two branches of research which are documented in Parts I and II of these Proceedings. Part II deals with the theory of reflection geometry which culminated in Bachmann's work where the geometric information is encoded in properties of the group of motions expressed by relations in the generating involutions. This approach is the backbone of the classification of motion groups for the classical unitary and orthogonal planes. The axioms in this char acterization are natural and plausible. They provoke the study of consequences of subsets of axioms which also yield natural geometries whose exploration is rewarding. Bachmann's central axiom is the three reflection theorem, showing that the number of reflections needed to express a motion is of great importance.
目次
I Optimal factorization of matrices, length problems.- I.1 Classical group.- I.2 Generators of automorphism groups of module.- I.3 Generators of automorphism groups of Cayley algebra.- I.4 Products of matrice.- II Reflection geometry.- II.1 Reflection groups - On pre-Hjelmslev groups and related topic.- II.2 Unitary geometry.- II.3 Lie and algebraic Johnsen group.- III Nice generators and relations, applications.- III.1 2-Generation of finite simple groups and some related topic.- III.2 Coxeter groups and three related topic.- III.3 Geometric structure of conjugacy classes in algebraic group.- III.4 Groups with polynomial growth and differential geometry.- III.5 Analyticity and growth of pro p-group.- III.6 Intersections of local algebraic extensions of a Hilbertian fiel.- III.7 Generators and relations for discontinuous group.
「Nielsen BookData」 より