Geometric and analytic number theory
著者
書誌事項
Geometric and analytic number theory
(Universitext)
Springer-Verlag, c1991
- : gw
- : us
- タイトル別名
-
Geometrische und analytische Zahlentheorie
大学図書館所蔵 全58件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our 'Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al ready studied analytic number theory, we also present results and principles of proof, which until now have barely if at all appeared in text books.
目次
1. The Dirichlet Approximation Theorem.- Dirichlet approximation theorem - Elementary number theory - Pell equation - Cantor series - Irrationality of ?(2) and ?(3) - multidimensional diophantine approximation - Siegel's lemma - Exercises on Chapter 1..- 2. The Kronecker Approximation Theorem.- Reduction modulo 1 - Comments on Kronecker's theorem - Linearly independent numbers - Estermann's proof - Uniform Distribution modulo 1 - Weyl's criterion - Fundamental equation of van der Corput - Main theorem of uniform distribution theory - Exercises on Chapter 2..- 3. Geometry of Numbers.- Lattices - Lattice constants - Figure lattices - Fundamental region - Minkowski's lattice point theorem - Minkowski's linear form theorem - Product theorem for homogeneous linear forms - Applications to diophantine approximation - Lagrange's theorem - the lattice?(i) - Sums of two squares - Blichfeldt's theorem - Minkowski's and Hlawka's theorem - Rogers' proof - Exercises on Chapter 3..- 4. Number Theoretic Functions.- Landau symbols - Estimates of number theoretic functions - Abel transformation - Euler's sum formula - Dirichlet divisor problem - Gauss circle problem - Square-free and k-free numbers - Vinogradov's lemma - Formal Dirichlet series - Mangoldt's function - Convergence of Dirichlet series - Convergence abscissa - Analytic continuation of the zeta- function - Landau's theorem - Exercises on Chapter 4..- 5. The Prime Number Theorem.- Elementary estimates - Chebyshev's theorem - Mertens' theorem - Euler's proof of the infinity of prime numbers - Tauberian theorem of Ingham and Newman - Simplified version of the Wiener-Ikehara theorem - Mertens' trick - Prime number theorem - The ?-function for number theory in ?(i) - Hecke's prime number theorem for ?(i) - Exercises on Chapter 5..- 6. Characters of Groups of Residues.- Structure of finite abelian groups - The character group - Dirichlet characters - Dirichlet L-series - Prime number theorem for arithmetic progressions - Gauss sums - Primitive characters - Theorem of Polya and Vinogradov - Number of power residues - Estimate of the smallest primitive root - Quadratic reciprocity theorem - Quadratic Gauss sums - Sign of a Gauss sum - Exercises on Chapter 6..- 7. The Algorithm of Lenstra, Lenstra and Lovasz.- Addenda.- Solutions for the Exercises.- Index of Names.- Index of Terms.
「Nielsen BookData」 より