Emergent computation : self-organizing, collective, and cooperative phenomena in natural and artificial computing networks
Author(s)
Bibliographic Information
Emergent computation : self-organizing, collective, and cooperative phenomena in natural and artificial computing networks
(Special issues of physica D)
MIT Press, 1991
1st MIT Press ed
- : pbk
Available at 21 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Kobe University Library for Science and Technology
pbk.548-01-146h039300001027*,
548-01-146//C030309304367
Note
Papers from a conference held at Los Alamos National Laboratory and organized by the Center for Nonlinear Studies
"A Bradford book."
Includes bibliographical references and indexes
Description and Table of Contents
Description
These 31 essays define and explore the concept of emergent computation in such areas as artificial networks, adaptive systems, classifier systems, connectionist learning, other learning, and biological networks to determine what properties are required of the supporting architectures that generate them.Researchers in several fields are exploring computational systems in which interesting global behavior emerges from local interactions among component parts - an approach called emergent computation. In these systems, interactions among simultaneous computations are exploited to improve efficiency, increase flexibility, or provide more realistic models of natural phenomena. These 31 essays define and explore the concept of emergent computation in such areas as artificial networks, adaptive systems, classifier systems, connectionist learning, other learning, and biological networks to determine what properties are required of the supporting architectures that generate them. Many of the essays share the themes of design (how to construct such systems), the importance of preexisting structure to learning and the role of parallelism, and the tension between cooperative and competitive models of interaction. In the introduction, Stephanie Forrest presents several detailed examples of the kinds of problems emergent computation can address. These include showing how emergent computation can lead to efficiency improvements in parallel processing, establishing the connection between emergent computation and nonlinear systems, and comparing two search techniques to show how the emergent-computational approach to a problem differs from other more conventional approaches.
by "Nielsen BookData"