Computational methods for general sparse matrices
Author(s)
Bibliographic Information
Computational methods for general sparse matrices
(Mathematics and its applications, v. 65)
Kluwer Academic, c1991
Available at 18 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [295]-318) and indexes
Description and Table of Contents
Description
'Et moi, ...* si j'avait su comment en revenir, One service mathematics has rendered the je n 'y serais point aile.' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell 0. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series.
Table of Contents
1. Exploiting Sparsity.- 2. Storage Schemes.- 3. General Scheme for Linear Algebraic Problems.- 4. Pivotal Strategies for Gaussian Elimination.- 5. Use of Iterative Refinement in the GE Process.- 6. Implementation of the Algorithms.- 7. Solving Least Squares Problems by Augmentation.- 8. Sparse Matrix Technique for Ordinary Differential Equations.- 9. Condition Number Estimators in a Sparse Matrix Software.- 10. Parallel Direct Solvers.- 11 Parallel Orthomin for General Sparse Matrices.- 12. Orthogonalization Methods.- 13. Two Storage Schemes for Givens Plane Rotations.- 14. Pivotal Strategies for Givens Plane Rotations.- 15. Iterative Refinement after the Plane Rotations.- 16. Preconditioned Conjugate Gradients for Givens Plane Rotations.- References.- Author Index.
by "Nielsen BookData"