Elements of the mathematical theory of multi-frequency oscillations

書誌事項

Elements of the mathematical theory of multi-frequency oscillations

by A.M. Samoilenko ; [translated from the Russian by Yuri Chapovsky]

(Mathematics and its applications, . Soviet ser. ; v. 71)

Kluwer Academic Publishers, c1991

タイトル別名

Ėlementy matematicheskoĭ teorii mnogochastotnykh kolebaniĭ

大学図書館所蔵 件 / 19

この図書・雑誌をさがす

注記

Translation of: Ėlementy matematicheskoĭ teorii mnogochastotnykh kolebaniĭ, Nauka, c1987

Includes bibliographical references (p. 297-308) and index

内容説明・目次

目次

1. Periodic and quasi-periodic functions.- 1.1. The function spaces $$ C^r \left( {\mathcal{T}_m } \right) $$ and $$ H^r \left( {\mathcal{T}_m } \right) $$.- 1.2. Structure of the spaces $$ H^r \left( {\mathcal{T}_m } \right) $$. Sobolev theorems.- 1.3. Main inequalities in $$ C^r \left( \omega \right) $$.- 1.4. Quasi-periodic functions. The spaces $$ H^r \left( \omega \right) $$.- 1.5. The spaces $$ H^r \left( \omega \right) $$ and their structure.- 1.6. First integral of a quasi-periodic function.- 1.7. Spherical coordinates of a quasi-periodic vector function.- 1.8. The problem on a periodic basis in En.- 1.9. Logarithm of a matrix in $$C^l \left( {\mathcal{T}_m } \right)$$. Sibuja's theorem.- 1.10. Garding's inequality.- 2. Invariant sets and their stability.- 2.1. Preliminary notions and results.- 2.2. One-sided invariant sets and their properties.- 2.3. Locally invariant sets. Reduction principle.- 2.4. Behaviour of an invariant set under small perturbations of the system.- 2.5. Quasi-periodic motions and their closure.- 2.6. Invariance equations of a smooth manifold and the trajectory flow on it.- 2.7. Local coordinates in a neighbourhood of a toroidal manifold. Stability of an invariant torus.- 2.8. Recurrent motions and multi-frequency oscillations.- 3. Some problems of the linear theory.- 3.1. Introductory remarks and definitions.- 3.2. Adjoint system of equations. Necessary conditions for the existence of an invariant torus.- 3.3. Necessary conditions for the existence of an invariant torus of a linear system with arbitrary non-homogeneity in $$ C\left( {\mathcal{T}_m } \right) $$.- 3.4. The Green's function. Sufficient conditions for the existence of an invariant torus.- 3.5. Conditions for the existence of an exponentially stable invariant torus.- 3.6. Uniqueness conditions for the Green's function and the properties of this function.- 3.7. Separatrix manifolds. Decomposition of a linear system.- 3.8. Sufficient conditions for exponential dichotomy of an invariant torus.- 3.9. Necessary conditions for an invariant torus to be exponentially dichotomous.- 3.10. Conditions for the $$C'\left( {\mathcal{T}_m } \right)$$-block decomposability of an exponentially dichotomous system.- 3.11. On triangulation and the relation between the $$C'\left( {\mathcal{T}_m } \right)$$)-block decomposability of a linear system and the problem of the extendability of an r-frame to a periodic basis in En.- 3.12. On smoothness of an exponentially stable invariant torus.- 3.13. Smoothness properties of Green's functions, the invariant torus and the decomposing transformation of an exponentially dichotomous system.- 3.14. Galerkin's method for the construction of an invariant torus.- 3.15. Proof of the main inequalities for the substantiation of Galerkin's method.- 4. Perturbation theory of an invariant torus of a nonlinear system.- 4.1. Introductory remarks. The linearization process.- 4.2. Main theorem.- 4.3. Exponential stability of an invariant torus and conditions for its preservation under small perturbations of the system.- 4.4. Theorem on exponential attraction of motions in a neighbourhood of an invariant torus of a system to its motions on the torus.- 4.5. Exponential dichotomy of invariant torus and conditions for its preservation under small perturbations of the system.- 4.6. An estimate of the smallness of a perturbation and the maximal smoothness of an invariant torus of a non-linear system.- 4.7. Galerkin's method for the construction of an invariant torus of a non-linear system of equations and its linear modification.- 4.8. Proof of Moser's lemma.- 4.9. Invariant tori of systems of differential equations with rapidly and slowly changing variables.- Author index.- Index of notation.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA13369459
  • ISBN
    • 0792314387
  • LCCN
    91029110
  • 出版国コード
    ne
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 原本言語コード
    rus
  • 出版地
    Dordrecht ; Boston
  • ページ数/冊数
    xvi, 313 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ