Limit theorems for large deviations
著者
書誌事項
Limit theorems for large deviations
(Mathematics and its applications, . Soviet series ; v. 73)
Kluwer Academic Publishers, c1991
大学図書館所蔵 全35件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Rev. translation of the Limit theorems for Large Deviations, published in Russian by Mokslas Publishers, Vilnius, Lithuania, 1989
Includes bibliographical references (p.218-229) and index
内容説明・目次
内容説明
"Et moi, ...* si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais poin t aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. H ea viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service. topology has rendered mathematical physics ...':: 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d 'e1:re of this series.
目次
1. The main notions.- 2. The main lemmas.- 2.1. General lemmas on the approximation of distribution of an arbitrary random variable by the normal distribution.- 2.2. Proof of lemmas 2.1-2.4.- 3. Theorems on large deviations for the distributions of sums of independent random variables.- 3.1. Theorems on large deviations under Bernstein's condition.- a) Sums of non-identically distributed random variables.- b) Sums of weighted random variables.- 3.2. A theorem of large deviations in terms of Lyapunov's fractions.- 4. Theorems of large deviations for sums of dependent random variables.- 4.1. Estimates of the kth order centered moments of random processes with mixing.- 4.2. Estimates of mixed cumulants of random processes with mixing.- 4.3. Estimates of cumulants of sums of dependent random variables.- 4.4. Theorems and inequalities of large deviations for sums of dependent random variables.- 5. Theorems of large deviations for polynomial forms, multiple stochastic integrals and statistical estimates.- 5.1. Estimates of cumulants and theorems of large deviations for polynomial forms, polynomial Pitman estimates and U-statistics.- 5.2. Cumulants of multiple stochastic integrals and theorems of large deviations.- 5.3. Large deviations for estimates of the spectrum of a stationary sequence.- 6. Asymptotic expansions in the zones of large deviations.- 6.1. Asymptotic expansion for distribution density of an arbitrary random variable.- 6.2. Estimates for characteristic functions.- 6.3. Asymptotic expansion in the Cramer zone for distribution density of sums of independent random variables.- 6.4. Asymptotic expansions in integral theorems with large deviations.- 7. Probabilities of large deviations for random vectors.- 7.1. General lemmas on large deviations for a random vector with regular behaviour of cumulants.- 7.2. Theorems on large deviations for sums of random vectors and quadratic forms.- a) Sums of non-identically distributed random vectors.- b) Sums of weighted random vectors.- c) Sums of random number of random vectors.- d) Quadratic forms.- Appendices.- Appendix 1. Proof of inequalities for moments and Lyapunov's fractions.- Appendix 2. Proof of the lemma on the representation of cumulants.- Appendix 3. Leonov - Shiryaev's formula.- References.
「Nielsen BookData」 より