Vector quantization and signal compression

書誌事項

Vector quantization and signal compression

by Allen Gersho, Robert M. Gray

(The Kluwer international series in engineering and computer science, SECS 159)

Kluwer Academic Publishers, c1992

大学図書館所蔵 件 / 39

この図書・雑誌をさがす

注記

Bibliographical references: p. 691-719

Includes index

内容説明・目次

内容説明

Herb Caen, a popular columnist for the San Francisco Chronicle, recently quoted a Voice of America press release as saying that it was reorganizing in order to "eliminate duplication and redundancy. " This quote both states a goal of data compression and illustrates its common need: the removal of duplication (or redundancy) can provide a more efficient representation of data and the quoted phrase is itself a candidate for such surgery. Not only can the number of words in the quote be reduced without losing informa tion, but the statement would actually be enhanced by such compression since it will no longer exemplify the wrong that the policy is supposed to correct. Here compression can streamline the phrase and minimize the em barassment while improving the English style. Compression in general is intended to provide efficient representations of data while preserving the essential information contained in the data. This book is devoted to the theory and practice of signal compression, i. e. , data compression applied to signals such as speech, audio, images, and video signals (excluding other data types such as financial data or general purpose computer data). The emphasis is on the conversion of analog waveforms into efficient digital representations and on the compression of digital information into the fewest possible bits. Both operations should yield the highest possible reconstruction fidelity subject to constraints on the bit rate and implementation complexity.

目次

1 Introduction.- 1.1 Signals, Coding, and Compression.- 1.2 Optimality.- 1.3 How to Use this Book.- 1.4 Related Reading.- I Basic Tools.- 2 Random Processes and Linear Systems.- 2.1 Introduction.- 2.2 Probability.- 2.3 Random Variables and Vectors.- 2.4 Random Processes.- 2.5 Expectation.- 2.6 Linear Systems.- 2.7 Stationary and Ergodic Properties.- 2.8 Useful Processes.- 2.9 Problems.- 3 Sampling.- 3.1 Introduction.- 3.2 Periodic Sampling.- 3.3 Noise in Sampling.- 3.4 Practical Sampling Schemes.- 3.5 Sampling Jitter.- 3.6 Multidimensional Sampling.- 3.7 Problems.- 4 Linear Prediction.- 4.1 Introduction.- 4.2 Elementary Estimation Theory.- 4.3 Finite-Memory Linear Prediction.- 4.4 Forward and Backward Prediction.- 4.5 The Levinson-Durbin Algorithm.- 4.6 Linear Predictor Design from Empirical Data.- 4.7 Minimum Delay Property.- 4.8 Predictability and Determinism.- 4.9 Infinite Memory Linear Prediction.- 4.10 Simulation of Random Processes.- 4.11 Problems.- II Scalar Coding.- 5 Scalar Quantization I.- 5.1 Introduction.- 5.2 Structure of a Quantizer.- 5.3 Measuring Quantizer Performance.- 5.4 The Uniform Quantizer.- 5.5 Nonuniform Quantization and Companding.- 5.6 High Resolution: General Case.- 5.7 Problems.- 6 Scalar Quantization II.- 6.1 Introduction.- 6.2 Conditions for Optimality.- 6.3 High Resolution Optimal Companding.- 6.4 Quantizer Design Algorithms.- 6.5 Implementation.- 6.6 Problems.- 7 Predictive Quantization.- 7.1 Introduction.- 7.2 Difference Quantization.- 7.3 Closed-Loop Predictive Quantization.- 7.4 Delta Modulation.- 7.5 Problems.- 8 Bit Allocation and Transform Coding.- 8.1 Introduction.- 8.2 The Problem of Bit Allocation.- 8.3 Optimal Bit Allocation Results.- 8.4 Integer Constrained Allocation Techniques.- 8.5 Transform Coding.- 8.6 Karhunen-Loeve Transform.- 8.7 Performance Gain of Transform Coding.- 8.8 Other Transforms.- 8.9 Sub-band Coding.- 8.10 Problems.- 9 Entropy Coding.- 9.1 Introduction.- 9.2 Variable-Length Scalar Noiseless Coding.- 9.3 Prefix Codes.- 9.4 Huffman Coding.- 9.5 Vector Entropy Coding.- 9.6 Arithmetic Coding.- 9.7 Universal and Adaptive Entropy Coding.- 9.8 Ziv-Lempel Coding.- 9.9 Quantization and Entropy Coding.- 9.10 Problems.- III Vector Coding.- 10 Vector Quantization I.- 10.1 Introduction.- 10.2 Structural Properties and Characterization.- 10.3 Measuring Vector Quantizer Performance.- 10.4 Nearest Neighbor Quantizers.- 10.5 Lattice Vector Quantizers.- 10.6 High Resolution Distortion Approximations.- 10.7 Problems.- 11 Vector Quantization II.- 11.1 Introduction.- 11.2 Optimality Conditions for VQ.- 11.3 Vector Quantizer Design.- 11.4 Design Examples.- 11.5 Problems.- 12 Constrained Vector Quantization.- 12.1 Introduction.- 12.2 Complexity and Storage Limitations.- 12.3 Structurally Constrained VQ.- 12.4 Tree-Structured VQ.- 12.5 Classified VQ.- 12.6 Transform VQ.- 12.7 Product Code Techniques.- 12.8 Partitioned VQ.- 12.9 Mean-Removed VQ.- 12.10 Shape-Gain VQ.- 12.11 Multistage VQ.- 12.12 Constrained Storage VQ.- 12.13 Hierarchical and Multiresolution VQ.- 12.14 Nonlinear Interpolative VQ.- 12.15 Lattice Codebook VQ.- 12.16 Fast Nearest Neighbor Encoding.- 12.17 Problems.- 13 Predictive Vector Quantization.- 13.1 Introduction.- 13.2 Predictive Vector Quantization.- 13.3 Vector Linear Prediction.- 13.4 Predictor Design from Empirical Data.- 13.5 Nonlinear Vector Prediction.- 13.6 Design Examples.- 13.7 Problems.- 14 Finite-State Vector Quantization.- 14.1 Recursive Vector Quantizers.- 14.2 Finite-State Vector Quantizers.- 14.3 Labeled-States and Labeled-Transitions.- 14.4 Encoder/Decoder Design.- 14.5 Next-State Function Design.- 14.6 Design Examples.- 14.7 Problems.- 15 Tree and Trellis Encoding.- 15.1 Delayed Decision Encoder.- 15.2 Tree and Trellis Coding.- 15.3 Decoder Design.- 15.4 Predictive Trellis Encoders.- 15.5 Other Design Techniques.- 15.6 Problems.- 16 Adaptive Vector Quantization.- 16.1 Introduction.- 16.2 Mean Adaptation.- 16.3 Gain-Adaptive Vector Quantization.- 16.4 Switched Codebook Adaptation.- 16.5 Adaptive Bit Allocation.- 16.6 Address VQ.- 16.7 Progressive Code Vector Updating.- 16.8 Adaptive Codebook Generation.- 16.9 Vector Excitation Coding.- 16.10 Problems.- 17 Variable Rate Vector Quantization.- 17.1 Variable Rate Coding.- 17.2 Variable Dimension VQ.- 17.3 Alternative Approaches to Variable Rate VQ.- 17.4 Pruned Tree-Structured VQ.- 17.5 The Generalized BFOS Algorithm.- 17.6 Pruned Tree-Structured VQ.- 17.7 Entropy Coded VQ.- 17.8 Greedy Tree Growing.- 17.9 Design Examples.- 17.10 Bit Allocation Revisited.- 17.11 Design Algorithms.- 17.12 Problems.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ