Classical dynamical systems and Classical field theory
著者
書誌事項
Classical dynamical systems and Classical field theory
(A course in mathematical physics / Walter Thirring, 1 and 2)
Springer-Verlag, c1992
2nd ed
- : us
- : au
- タイトル別名
-
Classical dynamical systems
Classical field theory
大学図書館所蔵 全15件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographies and indexes
"Springer study edition" -- Back cover
内容説明・目次
内容説明
The last decade has seen a considerable renaissance in the realm of classical dynamical systems, and many things that may have appeared mathematically overly sophisticated at the time of the first appearance of this textbook have since become the everyday tools of working physicists. This new edition is intended to take this development into account. I have also tried to make the book more readable and to eradicate errors. Since the first edition already contained plenty of material for a one semester course, new material was added only when some of the original could be dropped or simplified. Even so, it was necessary to expand the chap ter with the proof of the K-A-M Theorem to make allowances for the cur rent trend in physics. This involved not only the use of more refined mathe matical tools, but also a reevaluation of the word "fundamental. " What was earlier dismissed as a grubby calculation is now seen as the consequence of a deep principle. Even Kepler's laws, which determine the radii of the planetary orbits, and which used to be passed over in silence as mystical nonsense, seem to point the way to a truth unattainable by superficial observation: The ratios of the radii of Platonic solids to the radii of inscribed Platonic solids are irrational, but satisfy algebraic equations of lower order.
目次
1 Introduction.- 1.1 Equations of Motion.- 1.2 The Mathematical Language.- 1.3 The Physical Interpretation.- 2 Analysis on Manifolds.- 2.1 Manifolds.- 2.2 Tangent Spaces.- 2.3 Flows.- 2.4 Tensors.- 2.5 Differentiation.- 2.6 Integrals.- 3 Hamiltonian Systems.- 3.1 Canonical Transformations g.- 3.2 Hamilton's Equations.- 3.3 Constants of Motion.- 3.4 The Limit t ? I +/- ?.- 3.5 Perturbation Theory: Preliminaries.- 3.6 Perturbation Theory: The Iteration.- 4 Nonrelativistic Motion.- 4.1 Free Particles.- 4.2 The Two-Body Problem.- 4.3 The Problem of Two Centers of Force.- 4.4 The Restricted Three-Body Problem.- 4.5 The N-body Problem.- 5 Relativistic Motion.- 5.1 The Hamiltonian Formulation of the Electrodynamic Equations of Motions.- 5.2 The Constant Field.- 5.3 The Coulomb Field.- 5.4 The Betatron.- 5.5 The Traveling Plane Disturbance.- 5.6 Relativistic Motion in a Gravitational Field.- 5.7 Motion in the Schwarzschild Field.- 5.8 Motion in a Gravitational Plane Wave.- 6 The Structure of Space and Time.- 6.1 The Homogeneous Universe.- 6.2 The Isotropic Universe.- 6.3 Me according to Galileo.- 6.4 Me as Minkowski Space.- 6.5 Me as a Pseudo-Riemannian Space.- 1. Introduction.- 1.1 Physical Aspects of Field Dynamics.- 1.2 The Mathematical Formalism.- 1.3 Maxwell's and Einstein's Equations.- 2. The Electromagnetic Field of a Known Charge Distribution.- 2.1 The Stationary-Action Principle and Conservation Theorems.- 2.2 The General Solution.- 2.3 The Field of a Point Charge.- 2.4 Radiative Reaction.- 3. The Field in the Presence of Conductors.- 3.1 The Superconductor.- 3.2 The Half-Space, the Wave-Guide, and the Resonant Cavity.- 3.3 Diffraction at a Wedge.- 3.4 Diffraction at a Cylinder.- 4. Gravitation.- 4.1 Covariant Differentiation and the Curvature of Space.- 4.2 Gauge Theories and Gravitation.- 4.3 Maximally Symmetric Spaces.- 4.4 Spaces with Maximally Symmetric Submanifolds.- 4.5 The Life and Death of Stars.- 4.6 The Existence of Singularities.
「Nielsen BookData」 より