Set theory with a universal set : exploring an untyped universe
著者
書誌事項
Set theory with a universal set : exploring an untyped universe
(Oxford logic guides, 20)(Oxford science publications)
Clarendon Press , Oxford University Press, 1992
大学図書館所蔵 全22件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 135-147
Includes indexes
内容説明・目次
内容説明
Set theory is concerned with the foundations of mathematics. In the original formulations of set theory, there were paradoxes concerned with the idea of the "set of all sets". Current standard theory (Zermelo-Fraenkel) avoids these paradoxes by restricting the way sets may be formed by other sets specifically to disallow the possibility of forming the set of all sets. In the 1930s, Quine proposed a different form of set theory in which the set of all sets - the universal set - is allowed, but other restrictions are placed on these axioms. Since then, the steady interest expressed in these non-standard set theories has been boosted by their relevance to computer science. This text concentrates on Quine's "New Foundations", reflecting the author's belief that this provides the richest and most mysterious of the various systems dealing with set theories with a universal set. Dr Forster provides an introduction to those interested in the topic and a reference work for those already involved in this area.
目次
- Part 1 Introduction: annotated definitions
- some motivations and axioms
- a brief survey
- how do theories with V E V avoid paradoxes?
- chronology. Part 2 NF and related systems: NF
- cardinal and ordinal arithmetic
- the Kay-Specker equiconsistency lemma
- remarks on subsystems, term models and prefix classes
- the converse consistency problem. Part 3 Permutation models: permutation in NF
- applications to other theories. Part 4 Interpretations in well-founded sets: Church's universal set theory CUS
- Mitchell's set theory
- beyond Church, Sheridan and Mitchell. Part 5 Open problems: permutation models and quantifier hierarchies
- cardinals and ordinals in NF
- KF
- Z
- other subsystems
- automorphisms and well-founded extensional relations
- term models
- miscellaneous.
「Nielsen BookData」 より