Renormalization group '91 : second internationl conference, Dubna, USSR, 3-6 September 1991
著者
書誌事項
Renormalization group '91 : second internationl conference, Dubna, USSR, 3-6 September 1991
World Scientific, c1992
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
"Conference 'Renormalization Group' was held at Dubna, USSR" -- Pref.
内容説明・目次
内容説明
The papers included here deal with the many faces of renormalization group formalism as it is used in different branches of theoretical physics. The subjects covered emphasize various applications to the theory of turbulence, chaos, quantum chaos in dynamical systems, spin systems and vector models. Also discussed are applications to related topics such as quantum field theory and chromodynamics, high temperature superconductivity and plasma physics.
目次
- RG in Chern-Simons field theories and high-temperature superconductivity, L.V. Avdeev and D.I. Kazakov
- the three-loop QED photon vacuum polarization function in the -scheme and the four-loop QED beta-function in the on-shell scheme, S.G. Gorishny et al
- method of effective charges and Bordsky-Lepage-MacKenzie criterion, G. Grunberg
- critical exponents for Ising-like systems in non-integer dimensions from field theory, Yu Holovatch and M. Shpot
- scaling in superconductors - three-loop RG expansions for a three-dimensional model with three coupling constants, S.A. Antonenko and A.I. Sokolov
- a renormalization group analysis of frustrated non-collinear magnets, P. Azaria and B. Delamotte
- critical properties of the N-vector model near large-scale defects, R.Z. Bariev and I.Z. Ilaldinov
- dynamics of the inhomogeneous excitations in the one-dimensional isotropic X-Y model of spin s=1/2, G.O. Berim
- the principle of maximum randomness in the theory of fully developed turbulence, L. Ts Adzhemyan and M. Yu Nalimov
- chaotic renormalization group transformations, P.H. Damagaard
- symmetry breaking bifurcations in chaotic systems, P. Grassberger and A.S. Pikovsky
- the renormalization group method based on group analysis, V.F. Kovalev et al.
「Nielsen BookData」 より