Applied theory of functional differential equations
Author(s)
Bibliographic Information
Applied theory of functional differential equations
(Mathematics and its applications, . Soviet series ; 85)
Kluwer Academic Publishers, c1992
Available at 28 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
'E.t moi, .. " si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' Jules Verne where it belongs, on the topmost shelf nex t to the dusty canister labelled 'discarded non- The series is divergent; thererore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Table of Contents
Preface. 1. Models. 2. General Theory. 3. Stability of Retarded Differential Equations. 4. Stability of Neutral Type Functional Differential Equations. 5. Stability of Stochastic Functional Differential Equations. 6. Problems of Control for Deterministic FEDs. 7. Optimal Control of Stochastic Delay Systems. 8. State Estimates of Stochastic Systems with Delay. Bibliography. Index.
by "Nielsen BookData"