Current topics in analytic function theory
著者
書誌事項
Current topics in analytic function theory
World Scientific, c1992
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
This volume is a collection of research-and-survey articles by eminent and active workers around the world on the various areas of current research in the theory of analytic functions.Many of these articles emerged essentially from the proceedings of, and various deliberations at, three recent conferences in Japan and Korea: An International Seminar on Current Topics in Univalent Functions and Their Applications which was held in August 1990, in conjunction with the International Congress of Mathematicians at Kyoto, at Kinki University in Osaka; An International Seminar on Univalent Functions, Fractional Calculus, and Their Applications which was held in October 1990 at Fukuoka University; and also the Japan-Korea Symposium on Univalent Functions which was held in January 1991 at Gyeongsang National University in Chinju.
目次
- Univalent logharmonic extensions onto the unit disk or onto an annulus, Z. Abdulhadi and W. Hengartner
- hypergeometric functions and elliptic integrals, G.D. Anderson et al
- a certain class of caratheodory functions defined by conditions on the circle, J. Fuka and Z.J. Jakubowski
- recent advances in the theory of zero sets of the Bergman spaces, E.A. LeBlanc
- a coefficient functional for meromorphic univalent functions, L. Liu
- spherical linear invariance and uniform local spherical convexity, W. Ma and D. Minda
- a special differential subordination and its application to univalency conditions, S.S. Miller and P.T. Mocanu
- on the Bernardi integral functions, S. Owa
- analytic solutions of a class of Briot-Bouquet differential equations, S. Owa and H.M. Srivastava
- a certain class of generalized hypergeometric functions associated with the Hardy space of analytic functions, H.M. Srivastava
- on the coefficients of the univalent functions of the Nevanlinna classes N1 and N2, P.G. Todorov.
「Nielsen BookData」 より