Elliptically contoured models in statistics
著者
書誌事項
Elliptically contoured models in statistics
(Mathematics and its applications, v. 240)
Kluwer Academic, c1993
大学図書館所蔵 全20件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 311-319) and indexes
内容説明・目次
内容説明
In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. Fang, Kotz, and Ng presented a systematic study of multivariate elliptical distributions, however, they did not discuss the matrix variate case. Recently Fang and Zhang have summarized the results of generalized multivariate analysis which include vector as well as the matrix variate distributions. On the other hand, Fang and Anderson collected research papers on matrix variate elliptical distributions, many of them published for the first time in English. They published very rich material on the topic, but the results are given in paper form which does not provide a unified treatment of the theory. Therefore, it seemed appropriate to collect the most important results on the theory of matrix variate elliptically contoured distributions available in the literature and organize them in a unified manner that can serve as an introduction to the subject. The book will be useful for researchers, teachers, and graduate students in statistics and related fields whose interests involve multivariate statistical analysis. Parts of this book were presented by Arjun K Gupta as a one semester course at Bowling Green State University. Some new results have also been included which generalize the results in Fang and Zhang. Knowledge of matrix algebra and statistics at the level of Anderson is assumed. However, Chapter 1 summarizes some results of matrix algebra.
目次
Series Editor's Preface. Preface. 1. Preliminaries. 2. Basic Properties. 3. Probability Density Function and Expected Values. 4. Mixtures of Normal Distributions. 5. Quadratic Forms and other Functions of Elliptically Contoured Matrices. 6. Characterization Results. 7. Estimation. 8. Hypothesis Testing. 9. Linear Models. References. Author Index. Subject Index.
「Nielsen BookData」 より