Quo vadis, graph theory? : a source book for challenges and directions
著者
書誌事項
Quo vadis, graph theory? : a source book for challenges and directions
(Annals of discrete mathematics, 55)
North-Holland, 1993
大学図書館所蔵 全43件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Papers from an international meeting held at the University of Alaska Fairbanks, Alaska in August, 1990
"Quo vadis, graph theory? was also the title used for An International Conference on the Future of Graph Theory held at Universty of Alaska Fairbanks, August 1990"--p. viii
Includes bibliographical references and index
内容説明・目次
内容説明
Graph theory, as a recognized discipline, is a relative newcomer to mathematics. The first formal paper is found in the work of Leonard Euler in 1736. In recent years the subject has grown so rapidly that in today's literature, graph theory papers abound with mathematical developments and significant applications. As with any academic field, it is good to step back occasionally and ask "Where is all this activity taking us?", "What are the outstanding fundamental problems?", "What are the next important steps to take?" In short, "Quo vadis, graph theory?". The contributors to this volume aim, together, to provide a comprehensive reference source for future directions and open questions in the field.
目次
- Whither graph theory?, W.T. Tutte
- the future of graph theory, B. Bollobas
- new directions in graph theory (with an emphasis on the role of applications), F.S. Roberts
- a survey of (m,k)-colorings, M. Frick
- numerical decks of trees, F. Gavril et al
- the complexity of colouring by infinite vertex transitive graphs, B. Bauslaugh
- rainbow subgraphs in edge-colourings of complete graphs, P. Erdos and Z. Tuza
- graphs with special distance properties, M. Lewinter
- probability models for random multigraphs with applications in cluster analysis, E.A.J. Godehardt
- solved and unsolved problems in chemical graph theory, A.T. Balaban
- detour distance in graphs, G. Chartrand et al
- integer-distance graphs, R.P. Grimaldi
- toughness and the cycle structure of graphs, D. Bauer and E, Schmeichel
- the Birkhoff-Lewis equations for graph-colourings, W.T. Tutte
- the complexity of knots, D.J.A. Welsh
- the impact of F-polynomials in graph theory, E.J. Farrell
- a note on well-covered graphs, V. Chvatal and P.J. Slater
- cycle covers and cycle decomposition of graphs, C.-Q. Zhang
- matching extensions and productos of graphs, J. Liu and Q. Yu
- prospects for graph theory algorithms, R.C. Read
- the state of the three colour problem, R. Steinberg
- ranking planar embeddings using PQ-trees, A. Karabeg
- some problems and results in cochromatic theory, P. Erdos and J. Gimbel
- from random graphs to graph theory, A. Rucinski
- matching and vertex packing - how "hard" are they?, M.D. Plummer
- the competition number and its variants, S.-R. Kim
- which double starlike trees span ladders?, M. Lewinter and W.F. Widulski
- the random f-graph process, K.T. Balinska and L.V. Quintas
- quo vadis, random graph theory?, E.M. Palmer
- exploratory statistical analysis of networks, O. Frank and K. Norwicki
- the Hamiltonian decomposition of certain circulant graphs, J. Liu
- discovery-method teaching in graph theory, P.Z. Chinn.
「Nielsen BookData」 より