Dirac structures and integrability of nonlinear evolution equations
Author(s)
Bibliographic Information
Dirac structures and integrability of nonlinear evolution equations
(Nonlinear science : theory and applications)
Wiley & Sons, c1993
Available at 19 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
This monograph introduces the reader to infinite-dimensional Hamiltonian theory and applies it to the integrability of evolution equations. It builds a theory of Hamiltonian structures appropriate for dynamical systems with both finite and infinite dimensional phase space.
Table of Contents
- Algebraic theory of Dirac structures
- Nijenhuis operators and pairs of Dirac structures
- the complex of formal variational calculus
- local Hamiltonian operators
- local symplectic operators and evolution equations related to them.
by "Nielsen BookData"