Wavelets, fractals, and Fourier transforms : based on the proceedings of a conference on Wavelets, Fractals, and Fourier Transforms : New Developments and New Applications organized by the Institute of Mathematics and its Applications and Société de mathematiques appliquées et industrielles and held at Newnham College, Cambridge in December 1990
著者
書誌事項
Wavelets, fractals, and Fourier transforms : based on the proceedings of a conference on Wavelets, Fractals, and Fourier Transforms : New Developments and New Applications organized by the Institute of Mathematics and its Applications and Société de mathematiques appliquées et industrielles and held at Newnham College, Cambridge in December 1990
(The Institute of Mathematics and its Applications conference series, New ser.,
Clarendon Press , Oxford University Press, 1993
大学図書館所蔵 全82件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Recently there have been many developments and new applications of mathematical techniques for describing complex algebraic functions and analyzing empirical continuous data derived from many different types of signal, for example turbulent flows, oil well logs and electrical signals from the eye. Probably the most important and rapidly developing of these techniques involve Fourier methods (the oldest - nearly 200 years), fractals (about 30 years old in practice, though 80 in theory) and wavelets (about 15 years old). An international conference on these developments was organized jointly by the Societe de Mathemetiques et Industrielles (SMAI) and co-sponsered by the European Research Council of Fluid Turbulence and Combustion (ERCOFTAC), Trinity College and the US Air Force. It was held at Newnham College, Cambridge, in December 1990. Readers of this volume should find that these papers provide a useful introduction to the mathematics of wavelets, fractals and Fourier transforms, and to their many applications.
They should realize that the different methods of analysis expose different aspects of complex signals and surfaces and that the most suitable method often depends on the application under construction.
目次
- Part 1: wavelets, fractals and Fourier transforms - detection and analysis of structure, J.C.R. Hunt et al
- wavelets, fractals and order-two densities, K.J. Falconer
- orthonormal and continuous wavelet transform - algorithms and applications to the study of pointwise properties of functions, S. Jaffard
- iterated function systems and their applications, J. Stark and P. Bressloff
- biothogonal bases of symmetric compactly supported wavelets, C. Herley and M. Vetterli
- fractional Brownian motion and wavelets, P. Flandrin
- the wavelet Gibbs phenomenon, H.O. Raasmussen
- multiscale segmentation of well logs, P.L. Vermeer and J.A.H. Alkemade. Part 2: scale-invariance and self-similar "wavelet" transforms - an analysis of natural scenes and mammalian visual systems, D.J. Field
- wavlets and astronomical image analysis, A. Bijaoui and A. Fresnel
- universe heterogeneities from a wavelet analysis, A. Bijaoui et al
- the wavelet transformation applied to flow around Antarctica, B. Sinha and K.J. Richards
- quantification of scale cascades in the stratosphere using wavelet transforms, P.H. Haynes and W.A. Norton. Part 3: multiple-scale correlation detection, wavelet transforms and multifractal turbulance, J.G. Jones et al
- wavelet analysis of turbulance - the mixed energy cascade, C. Meneneau
- hierarchical models of turbulance, P. Frick and V. Zimin
- characterization of ATM traffic in the frequency domain, M. Luoni
- the self-similarity of d-dimensional potential turbulance, S.N. Gurbatov and A.I. Saichev
- solution of Burgers' equation by Fourier transform methods, J. Caldwell
- spiral structures in turbulant flow, H.K. Moffatt
- fractals in turbulance, J.C. Vassilicos
- the physical models and mathematical description of 1/f noise, A. Malakhov and A. Yakimov
- fractal models of density interfaces, J.M. Redondo
- the fractal dimension of oil-water interfaces in channel flows, G. Saether et al
- fractal aggregates in the atmosphere, J.M. Redondo et al
- morphology of disordered materials studied by multifractal analysis, J. Muller.
「Nielsen BookData」 より