Linear programming : algorithms and applications
著者
書誌事項
Linear programming : algorithms and applications
(Science paperbacks, 167)
Chapman and Hall, 1981
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 148
Includes index
内容説明・目次
内容説明
This text is based on a course of about 16 hours lectures to students of mathematics, statistics, and/or operational research. It is intended to introduce readers to the very wide range of applicability of linear programming, covering problems of manage ment, administration, transportation and a number of other uses which are mentioned in their context. The emphasis is on numerical algorithms, which are illustrated by examples of such modest size that the solutions can be obtained using pen and paper. It is clear that these methods, if applied to larger problems, can also be carried out on automatic (electronic) computers. Commercially available computer packages are, in fact, mainly based on algorithms explained in this book. The author is convinced that the user of these algorithms ought to be knowledgeable about the underlying theory. Therefore this volume is not merely addressed to the practitioner, but also to the mathematician who is interested in relatively new developments in algebraic theory and in some combinatorial theory as well. The chapters on duality, and on flow in networks, are particularly directed towards this aim and they contain theorems which might not be directly relevant to methods of computation. The application of the concept of duality to the theory of games is of historical interest. It is hoped that the figures, which illustrate the results, will be found illuminating by readers with active geometrical imagination.
目次
1. Linear Programming.- 2. Algorithms.- 3. Duality.- 4. Theory of Games.- 5. Transportation and Flow in Networks.- 6. Integer Programming.- 7. Linear Programming under Uncertainty.- Answers to Problems.- References.
「Nielsen BookData」 より