Machine scheduling problems : classification, complexity and computations
著者
書誌事項
Machine scheduling problems : classification, complexity and computations
Nijhoff, 1976
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Result of a doctoral dissertation ... University of Amsterdam."
Bibliography: p. [167]-175
Includes indexes
内容説明・目次
内容説明
This book is the result of a doctoral dissertation written under the super- vision of professor dr. G. de Leve of the University of Amsterdam. I am very grateful to him for suggesting the subject and for his guidance and support during the preparation. Professor dr. ir. J. S. Folkers has carefully read various drafts of the manuscript; I would like to thank him for his many helpful comments and suggestions. I have also greatly benefited from the advice of Gene Lawler, who spent the summer of 1975 in Amsterdam at the invitation of the Stichting Mathematisch Centrum. A quick glance at the bibliography already indicates how much lowe to the extensive cooperation with Jan Karel Lenstra. Many of the results in this book are the outcome of our joint research. I am similarly grateful to Ben Lageweg, who actively participated in many projects and who was in charge of all computational experiments. The Graduate School of Management in Delft provided a stimulating professional environment. In particular I want to acknowledge the inspiring advice of David Bree and the useful contributions by Erik de Leede, Hans Geilenkirchen, Jaap Galjaard and Jan Knipscheer.
I would like to thank Peter Brucker, Robbert Peters, K. Boskma, Michael Florian and Graham McMahon for their valuable written reactions. I am also grateful to Hendrik Lenstra II and Peter van Emde Boas for various illuminating conversations and to Bernard Dorhout for his kind cooperation.
目次
- 1. Introduction.- 2. Problem Formulation.- 2.1. Notations and representations.- 2.2. Restrictive assumptions.- 2.3. Optimality criteria.- 2.3.1. Regular measures.- 2.3.1.1. Criteria based on completion times.- 2.3.1.2. Criteria based on due dates.- 2.3.1.3. Criteria based on inventory cost and utilization.- 2.3.2. Relations between criteria.- 2.3.3. Analysis of scheduling costs.- 2.4. Classification of problems.- 3. Methods of Solution.- 3.1. Complete enumeration.- 3.2. Combinatorial analysis.- 3.3. Mixed integer and non-linear programming.- 3.3.1. [Bowman 1959].- 3.3.2. [Pritsker et al. 1969].- 3.3.3. [Wagner 1959].- 3.3.4. [Manne 1960].- 3.3.5. [Nepomiastchy 1973].- 3.4. Branch-and-bound.- 3.5. Dynamic programming.- 3.5.1. [Held and Karp 1962
- Lawler 1964].- 3.5.2. [Lawler and Moore 1969].- 3.6. Complexity theory.- 3.7. Heuristic methods.- 3.7.1. Priority rules.- 3.7.2. Bayesian analysis.- 4. One-Machine Problems.- 4.1. n|1?cmax problems.- 4.1.1. The n|1?Cmax problem.- 4.1.2. The n|1?Lmax problem.- 4.1.3. The general n|1?cmax problem.- 4.2. n|1|i|Cmax problems.- 4.2.1. The n|1|ri0|cmax problem.- 4.2.1.1. Lower bound by job splitting.- 4.2.1.2. The algorithm of McMahon and Florian 62.- 4.2.1.3. Precedence constraints.- 4.2.2. The n|1|seq dep|cmax problem.- 4.2.3. The n|1|prec|cmax problem.- 4.3. n|1??ci problems.- 4.3.1. The n|1??wiCi problem.- 4.3.2. The n|1??wiTi problem.- 4.3.3. The general n|1??Ci problem.- 4.3.3.1. Elimination criteria.- 4.3.3.2. A branch-and-bound algorithm.- 4.4. n|1|?|?Ci problems.- 4.4.1. The n|1|ri ? 0|?Ci problem.- 4.4.2. The n|1|seq dep|?Ci problem.- 4.4.3. The n|1|prec|?Ci problem.- 5. Two-Machine and Three-Machine Problems.- 5.1. The n|2|?,?|cmax and n|3|?,?|cmax problem.- 5.2. The n|2|F|?Ci problem.- 5.3. The n|2|P|Cmax problem with time lags.- 6. General Flow-Shop and Job-Shop Problems.- 6.1. The n|m|P|? problem.- 6.1.1. Elimination criteria for the n|m|P|Cmax problem.- 6.1.2. Lower bounds for the n|m|P|cmax problem.- 6.2. The n|m|F|? problem.- 6.3. The n|m|G|? problem.- 6.3.1. Lower bounds.- 6.3.2. Branching rules.- 6.3.2.1. The procedure 'actsched'.- 6.3.2.2. Branching on disjunctive arcs.- 6.4. The n|m|?, no wait|? problem.- 7. Concluding Remarks.- 7.1. Complexity of scheduling problems.- 7.2. Practical scheduling problems.- 7.3. Conclusions.- List Of Notations.- References.- Author Index.
「Nielsen BookData」 より