Membranes and sensory transduction
著者
書誌事項
Membranes and sensory transduction
Plenum Press, c1984
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographies and index
内容説明・目次
内容説明
The main purpose of this book is to unify approaches and ideas in the field of aneural sensory transduction. This field has recently come to the attention of several research groups in various disciplines, and their number seems to be growing. Unfortunately, because of the diverse scientific backgrounds of the researchers in the field, the apparent heterogeneity of experimental techniques (i. e. , behavioral response analysis, sophisticated biochemical and genetic manipulations, conventional and pulsed laser spectroscopy) and theoretical approaches may be discouraging, for both the experienced worker and the new- comer. Actually, this heterogeneity is more apparent than real, and unifying concepts, approaches, and ideas already exist, particularly with respect to all the questions concerning the role of membranes and their properties (such as ion permeability, electric potentials, and active transport) in the various steps of sensory perception and transduction processes. It is currently accepted that most, if not all, the fundamental facts in molecular sensory physiology of aneural organisms, be they chemosensory, photosensory, or geosensory, can ultimately be understood in terms of a few basic ideas. Each chapter of this book emphasizes and clarifies the role of mem- brane properties and phenomena in the particular sensory response examined. Of course, in some cases, this task has been rather complex because of the limited amount of experimental data clearly supporting a membrane-based model of sensory transduction.
目次
1 Membranes: Structure and Function.- 1. The Dynamic Structure of Cell Membranes.- 1.1. Introduction.- 1.2. Chemical Components.- 1.3. Membrane Structural Framework.- 1.4. Danielli-Davson and Fluid Mosaic Models.- 1.5. Laboratory Models.- 2. Kinetic and Thermodynamic Approach to Membrane Transport Properties.- 2.1. Equilibrium State.- 2.2. Nonequilibrium States.- 2.3. The Nernst-Planck Flux Equations.- 2.4. Specific Cases.- 2.5. Partition Coefficient at an Oil-Water Interface.- 2.6. Electrostatic Potentials at a Membrane-Solution Interface...- 2.7. Dipoles at a Membrane-Solution Interface.- 2.8. The Eyring Theory.- 3. Transport in Excitable Membranes.- 3.1. Introduction.- 3.2. Description of the Ionic Currents.- 3.3. The Hodgkin-Huxley Model.- 3.4. Ionic Channels.- 3.5. Selective Binding and Selective Permeability.- 3.6. The Sodium Channel.- 3.7. The Potassium Channel.- 3.8. Gating Currents.- 3.9. Noise Analysis.- 3.10. Single-Channel Recordings.- 3.11. Electrically Gated Channels in Planar Lipid Bilayers.- 3.12. Ionic Carriers in Planar Lipid Bilayers.- 4. Model Photosensitive Membranes.- 4.1. Introduction.- 4.2. Chlorophyll-Containing Lipid Bilayers.- 4.3. Bacteriorhodopsin and the Purple Membrane.- 4.4. Rhodopsin in Model Membranes.- References.- 2 Biochemistry of Chemosensory Behavior in Prokaryotes and Unicellular Eukaryotes.- 1. Diversity and Unity in Chemotaxis.- 1.1. Diverse Roles of Chemosensory Responses.- 1.2. Response-Regulator Model.- 2. Perception of Chemicals.- 2.1. Sensing the Gradient.- 2.2. Chemoreceptor Proteins on the Surface of Bacteria.- 2.3. Internal Receptors in Bacteria.- 2.4. Chemoreceptors in Eukaryotes.- 3. Signal Transduction.- 3.1. Focusing the Signals in Bacteria.- 3.2. Mechanism of Excitation in Paramecium.- 3.3. Signal Transduction in Leukocytes and Dictyostelium.- 4. Behavioral Responses.- 4.1. Klinokinesis in Bacteria.- 4.2. Klinokinesis and Orthokinesis in Ciliates.- 4.3. Tactic Behavior.- 5. Adaptation and Signal Processing.- 5.1. Role of Adaptation in Sensory Responses.- 5.2. Biochemistry of Adaptation in Bacteria.- 5.3. Adaptation in Eukaryotes.- 6. Models for Chemotaxis.- 7. Conclusion.- References.- 3 Mechanosensory Transduction in Protozoa.- 1. Introduction.- 2. Depolarizing and Hyperpolarizing Membrane Responses to Mechanical Stimulation.- 3. Ionic Mechanisms of the Mechanoreceptor Responses.- 4. Kinetic Analysis of the Mechanoreceptor Currents.- 5. Topographical Distribution of the Mechanoreceptor Channels.- 5.1. Ciliary Membrane or Somatic Membrane?.- 5.2. Anteroposterior Distribution.- 5.3. Dorsoventral Distribution.- 5.4. Species-Dependent Differences in Mechanosensitivity.- 6. Coupling of the Mechanoreceptor Responses with the Behavioral.- Responses.- References.- 4 Temperature Sensing in Microorganisms.- 1. Introduction.- 1.1. Overview.- 1.2. Difficulties Peculiar to Thermosensing.- 2. Cellular Components or Processes Affected by Temperature.- 2.1. Enzymes.- 2.2. Membranes.- 2.3. Protein-Lipid Interactions.- 2.4. Membrane Lipid Composition.- 3. Biological Examples.- 3.1. Bacteria.- 3.2. Ciliates.- 3.3. Acellular Slime Molds.- 3.4. Cellular Slime Molds.- 3.5. Nematodes.- 4. Summary.- References.- 5 Microbial Geotaxis.- 1. The Phenomena of Geotaxis.- 1.1. Geotaxis and Geotropism.- 1.2. Occurrence of Geotaxis.- 1.3. Orientation Direction Provided by Gravity.- 1.4. Energetics of Geotaxis.- 1.5. Biological Significance of Geotaxis.- 1.6. Geotaxis and Other Behaviors.- 2. Arenas of Debate.- 2.1. Mechanics versus Mechanism.- 2.2. Mechanisms of Response.- 2.3. Unproved Existence of Gravireceptors for Geotaxis.- 2.4. Involvement of Membranes and Sensory Transduction.- 3. Methods of Assessment.- 4 Hypotheses on the Mechanism of Geotaxis.- 4.1. Old Mechanisms and New Disputes.- 4.2. Physical Mechanisms.- 4.3. Physiological Mechanisms.- 5. Discussion.- 5.1. Physical and/or Physiological Mechanisms?.- 5.2. Conjectures on Physiological Mechanisms.- 5.3. Conclusion.- References.- 6 Photosensory Responses in Freely Motile Microorganisms.- 1. Introduction.- 2. Photomotile Responses.- 3. Photoreceptor Properties.- 3.1. Microenvironment and Photophysical Characteristics.- 3.2. Primary Molecular Events.- 4. Signal Transduction.- 4.1. Proton Gradients.- 4.2. Ionic Gradients.- 4.3. Electrical Gradients.- 4.4. Enzymatic Reactions.- 5. Information Transmission.- 5.1. Transmitter Molecules.- 5.2. Electrical Signals.- 6. Motor Responses.- 6.1. Flagellated Bacteria.- 6.2. Gliding Movements.- 6.3. Eukaryotic Cilia and Flagella.- 7. Concluding Remarks.- References.- 7 Phototropism.- 1. Introduction.- 2. The Sensory Transduction Chain.- 2.1. What Is It?.- 2.2. Elementary Rules for Model Builders.- 3. Phototropism in Higher Plants.- 3.1. Fluence-Response Curve.- 3.2. Phototropism and Light-Growth Response.- 3.3. Light Perception.- 3.4. Stimulus Transmission.- 4. Phototropism in Lower Plants.- 4.1. Types of Phototropic Reactions.- 4.2. Algae.- 4.3. Liverworts and Mosses.- 4.4. Ferns.- 4.5. Fungi.- 5. Quest for the Photoreceptor Responsible for Phototropism.- 5.1. Criteria for Identifying the Photoreceptor Suggested by Physiological Studies.- 5.2. The Action Spectrum Approach.- 5.3. The Inhibitor Approach.- 5.4. The Genetic Approach.- 5.5. The LIAC Approach.- 5.6. The Physicochemical Approach.- References.- Selected Readings.- 8 Chloroplast Movement.- 1. Introduction.- 2. Perception of the Light Signal.- 2.1. Photoreceptor Pigments in Photodinesis.- 2.2. Photoreceptor Pigments in Chloroplast Reorientation.- 2.3. Perception of Light Direction.- 3. Mechanics of Movement.- 4. Transduction Processes.- 4.1. The ATP Hypothesis.- 4.2. The Glyoxylate Hypothesis.- 4.3. The Proton Hypothesis.- 4.4. The Calcium Hypothesis.- 5. General Conclusions.- References.
「Nielsen BookData」 より