書誌事項

Applied hyperfunction theory

by Isao Imai

(Mathematics and its applications, . Japanese series ; 8)

Kluwer Academic Publishers, c1992

タイトル別名

Ōyō chōkansūron

大学図書館所蔵 件 / 29

この図書・雑誌をさがす

注記

Translation of: Ōyō chōkansūron

Includes bibliographical references (p. 395-396) and index

内容説明・目次

内容説明

Generalized functions are now widely recognized as important mathematical tools for engineers and physicists. But they are considered to be inaccessible for non-specialists. To remedy this situation, this book gives an intelligible exposition of generalized functions based on Sato's hyperfunction, which is essentially the `boundary value of analytic functions'. An intuitive image -- hyperfunction = vortex layer -- is adopted, and only an elementary knowledge of complex function theory is assumed. The treatment is entirely self-contained. The first part of the book gives a detailed account of fundamental operations such as the four arithmetical operations applicable to hyperfunctions, namely differentiation, integration, and convolution, as well as Fourier transform. Fourier series are seen to be nothing but periodic hyperfunctions. In the second part, based on the general theory, the Hilbert transform and Poisson-Schwarz integral formula are treated and their application to integral equations is studied. A great number of formulas obtained in the course of treatment are summarized as tables in the appendix. In particular, those concerning convolution, the Hilbert transform and Fourier transform contain much new material. For mathematicians, mathematical physicists and engineers whose work involves generalized functions.

目次

Series Editor's Preface. Preface. 1. Introduction. 2. Operations on Hyperfunctions. 3. Basic Hyperfunctions. 4. Hyperfunctions Depending on Parameters. 5. Fourier Transformation. 6. Fourier Transformation of Power-Type Hyperfunctions. 7. Upper (Lower)-Type Hyperfunctions. 8. Fourier Transforms - Existence and Regularity. 9. Fourier Transformation - Asymptotic Behaviour. 10. Periodic Hyperfunctions and Fourier Series. 11. Analytic Continuation and Projection of Hyperfunctions. 12. Products of Hyperfunctions. 13. Convolution of Hyperfunctions. 14. Convolution of Periodic Hyperfunctions. 15. Hilbert Transformation, Conjugate Hyperfunction. 16. Poisson-Schwarz Integration Formulae. 17. Integral Equations. 18. Laplace Transformation. Epilogue. References. Appendices A: Symbols. B: Functions, Hyperfunctions and Generating Functions. C: Special Functions. D: Power-Type Hyperfunctions with Negative Integer Power. E: Upper-Type and Lower-Type Hyperfunctions. F: Hyperfunctions and Generating Functions. G: Convolutions. H: Hilbert Transforms. I: Fourier Transforms. J: Laplace Transforms. K: Cosine Transforms and Sine Transforms. Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA20918375
  • ISBN
    • 0792315073
  • LCCN
    91035799
  • 出版国コード
    ne
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 原本言語コード
    jpn
  • 出版地
    Dordrecht ; Boston
  • ページ数/冊数
    xix, 438 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ