A handbook of silicate rock analysis
著者
書誌事項
A handbook of silicate rock analysis
Blackie, 1992, c1987
- : pbk
- London : pbk
大学図書館所蔵 全8件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"First edition 1987. First published in paperback 1992. Reprinted 1995,1996 c1987 Chapman & Hall" -- T.p. verso
Printed in Great Britain by Anthony Rowe Ltd, Chippenham, Wiltshire ISBN 0-7514-0287-7
Includes bibliographical references and index
内容説明・目次
内容説明
The techniques available for the chemical analysis of silicate without an appreciation of what happens in between. rocks have undergone a revolution over the last 30 years. However, to use an analytical technique most effectively, No longer is the analytical balance the only instrument used it is essential to understand its analytical characteristics, in for quantitative measurement, as it was in the days of classi particular the excitation mechanism and the response of the cal gravimetric procedures. A wide variety of instrumental signal detection system. In this book, these characteristics techniques is now commonly used for silicate rock analysis, have been described within a framework of practical ana including some that incorporate excitation sources and detec lytical aplications, especially for the routine multi-element tion systems that have been developed only in the last few analysis of silicate rocks. All analytical techniques available years. These instrumental developments now permit a wide for routine silicate rock analysis are discussed, including range of trace elements to be determined on a routine basis. some more specialized procedures. Sufficient detail is In parallel with these exciting advances, users have tended included to provide practitioners of geochemistry with a firm to become more remote from the data production process. base from which to assess current performance, and in some This is, in part, an inevitable result of the widespread intro cases, future developments.
目次
1 Concepts in analytical chemistry.- 1.1 Introduction.- 1.2 Terms and definitions in analytical chemistry.- 1.3 Units of measurement: the international system (SI) of units.- 1.4 Statistics.- 1.5 Detection limits.- 1.6 Sampling strategies: inhomogeneity effects.- 1.7 Contamination effects.- 1.8 Reporting analytical data.- 1.9 Standard additions calibrations.- 1.10 Rock reference materials.- 1.11 Which technique for which element?.- 2 Classical and rapid methods of analysis.- 2.1 Rock dissolution techniques: acid attack.- 2.2 Rock dissolution procedures: fusion with alkali salts.- 2.3 Classical methods of rock analysis.- 2.4 Evolution of rapid methods of analysis.- 2.5 Photometry.- 2.6 Flame photometry.- 2.7 Titrations involving ethylenediaminetetra-acetic acid (EDTA).- 2.8 A rapid scheme of analysis.- 2.9 Determination of ferrous iron.- 2.10 The determination of water and carbon dioxide.- 2.11 The auto-analyser.- 3 Optical spectrometry: principles and instrumentation.- 3.1 Principles.- 3.2 The nature of light.- 3.3 Atomic spectroscopy.- 3.4 The electronic structure of atoms: quantum theory.- 3.5 Spectroscopic notation for electron orbital configurations: the Russell-Saunders coupling scheme.- 3.6 The absorption of light.- 3.7 The emission of light.- 3.8 Instrumentation for optical spectroscopy.- 3.9 Monochromator.- 3.10 Optical filters.- 3.11 Slits.- 3.12 Photon detectors.- 3.13 Classical monochromator designs.- 3.14 Stray light effects.- 3.15 Errors in spectrometric measurements.- 4 Atomic absorption spectrometry.- 4.1 Introduction.- 4.2 Instrumentation.- 4.3 Properties of flames.- 4.4 Flame chemistry and atomization interferences in the flame: atomization processes in the flame.- 4.5 Instrumental and spectral interferences.- 4.6 Instrument optimization for routine analysis.- 4.7 Schemes of analysis using flame atomic absorption.- 4.8 Interference suppression.- 4.9 Detection limits.- 4.10 Routine performance.- 4.11 Electrothermal atomization.- 4.12 Atomization in the hollow graphite furnace.- 4.13 Background correction.- 4.14 Geological applications of furnace AAS.- 4.15 Cold vapour and hydride generators.- 4.16 Solid sampling and novel atomization devices.- 5 Inductively coupled plasma-atomic emission spectrometry.- 5.1 Historic development and analytical capabilities.- 5.2 The inductively coupled argon plasma.- 5.3 Nebulizers and spray chambers.- 5.4 Physical structure of the plasma.- 5.5 Temperature distribution in the plasma.- 5.6 Atomization and excitation processes.- 5.7 Interferences in the argon plasma.- 5.8 Measurement and analysis of emission spectra.- 5.9 Some instrument considerations-simultaneous ?. sequential monochromators.- 5.10 Optimizing operating parameters.- 5.11 Calibrations for ICP-AES.- 5.12 Silicate rock analysis.- 5.13 Direct current plasma-optical emission spectrometry.- 6 Arc and spark source optical emission spectrometry.- 6.1 Historical perspective.- 6.2 Instrumentation.- 6.3 Sample preparation.- 6.4 Behaviour of elements in an arc discharge.- 6.5 Simultaneous multi-element analysis.- 6.6 Conclusions.- 7 Ion-selective electrodes.- 7.1 Analytical perspective.- 7.2 Instrumentation.- 7.3 The Nernst equation.- 7.4 Interference effects: non-ideal Nernst behaviour.- 7.5 Schemes for the analysis of geological samples for fluorine.- 7.6 Determination of chlorine by ion-selective electrodes.- 7.7 Other techniques for the determination of chlorine and fluorine.- 8 X-ray fluorescence analysis: principles and practice of wavelength dispersive spectrometry.- 8.1 Analytical characteristics.- 8.2 Energy and wavelength of x-rays.- 8.3 The origin of x-ray spectra.- 8.4 Competing de-excitation routes.- 8.5 Excitation of x-ray spectra.- 8.6 Interaction of x-rays with matter.- 8.7 Matrix effects in geological samples.- 8.8 Mathematical procedures for the correction of absorption-enhancement effects.- 8.9 Instrumentation for wavelength dispersive XRF analysis.- 8.10 Experimental considerations.- 8.11 Routine operating conditions and statistical considerations.- 8.12 Performance in routine analysis.- 8.13 Concluding remarks.- 9 Energy dispersive X-ray spectrometry.- 9.1 The development of energy dispersive XRF.- 9.2 The Si(Li) detector.- 9.3 Detector configuration and characteristics.- 9.4 Pulse processing electronics.- 9.5 Interaction of x-rays with the silicon detector.- 9.6 Comparison of ED and WD spectrometers.- 9.7 Silicate rock analysis by ED-XRF using direct tube excitation.- 9.8 Spectrum analysis procedures.- 9.9 Routine analysis using direct tube excitation.- 9.10 Indirect excitation methods.- 9.11 Monochromatic polarized excitation using Bragg diffraction at 2?= 90 DegreesC.- 9.12 Radioisotope excitation.- 9.13 Total reflection of primary beam.- 9.14 Concluding remarks.- 10 Electron probe microanalysis.- 10.1 The development of microprobe techniques.- 10.2 Microbeam techniques.- 10.3 Instrumentation for the electron probe microanalyser.- 10.4 Electron column design.- 10.5 Vacuum requirements.- 10.6 Interactions between the electron beam and sample: the excited volume.- 10.7 Phenomena within the excited volume.- 10.8 X-ray production.- 10.9 Matrix correction procedures.- 10.10 X-ray spectrometers.- 10.11 Calibration and routine operation.- 10.12 Energy dispersive spectrometers.- 10.13 Sample preparation requirements.- 10.14 Microprobe mineral standards.- 10.15 Routine analytical performance.- 10.16 Analysis of non-silicate minerals: uranium, thorium and rare-earth elements.- 10.17 Bulk rock analysis by electron microprobe.- 10.18 The SEM as a microprobe.- 10.19 Concluding remarks.- 11 Other microbeam and surface analysis techniques.- 11.1 Introduction.- 11.2 The ion probe.- 11.3 The laser microprobe.- 11.4 Particle-induced x-ray emission (PIXE).- 11.5 Electron spectroscopy for chemical analysis (ESCA).- 11.6 Transmission electron microscopy: the chemical analysis of thin foils.- 12 Neutron activation analysis.- 12.1 Introduction.- 12.2 The growth and decay of radioactivity.- 12.3 Radioactive decay schemes.- 12.4 Instrumentation.- 12.5 Pulse-processing electronics.- 12.6 Interaction of gamma radiation with germanium detectors.- 12.7 Typical spectrum.- 12.8 Detector characteristics.- 12.9 Practical considerations-instrumental neutron activation.- 12.10 Determination of photopeak areas.- 12.11 Other analytical considerations.- 12.12 Interferences and systematic errors.- 12.13 Routine schemes of analysis.- 12.14 Chondrite normalized abundances.- 12.15 Epithermal ?. thermal irradiations.- 12.16 Short-lived isotopes.- 12.17 Radiochemical separation procedures.- 12.18 Prompt gamma neutron activation analysis.- 12.19 Concluding remarks.- 13 Nuclear techniques for the determination of uranium and thorium and their decay products.- 13.1 Techniques for uranium/thorium determination.- 13.2 The uranium-thorium decay chain.- 13.3 Delayed neutron fission activation analysis.- 13.4 Fission track analysis.- 13.5 Other autoradiography techniques for locating and analysing specific elements in thin section.- 13.6 Gamma spectrometry.- 13.7 Alpha spectrometry.- 13.8 Secular equilibrium with particular reference to uranium/thorium disequilibrium measurements.- 13.9 Uranium and thorium series disequilibrium.- 14 Ion exchange preconcentration procedures.- 14.1 Introduction.- 14.2 Ion exchange techniques.- 14.3 Characteristics of ion exchange resins.- 14.4 Some theoretical aspects of ion exchange.- 14.5 Optimizing column separations.- 14.6 Applications of ion exchange chromatography to rare-earth element separations.- 14.7 Chelating ion exchange resins.- 14.8 Other preconcentration procedures.- 15 Gold and platinum group element analysis.- 15.1 Introduction.- 15.2 Fire assay procedures.- 15.3 Acid extraction of noble metals.- 15.4 Other methods of noble metal analysis.- 15.5 Noble metal analysis-comparisons of data.- 15.6 A note on the distribution of noble metals.- 15.7 Graphical presentation of PGE data.- 16 Mass spectrometry: principles and instrumentation.- 16.1 Introduction.- 16.2 Mass spectrometric techniques in geology.- 16.3 The ion source.- 16.4 The mass analyser.- 16.5 Resolution.- 16.6 Double-focusing mass spectrometer.- 16.7 Quadrupole mass spectrometer.- 16.8 Ion detectors.- 16.9 Vacuum requirements.- 16.10 Abundance sensitivity.- 16.11 Beam switching ?. multiple collection.- 16.12 Isotopes and mass spectra: the structure of atoms and nuclear stability.- 16.13 Mass defect phenomena.- 16.14 Radioactive isotopes in nature.- 16.15 Geochronology.- 16.16 Geochronometers of geological importance.- 17 Thermal ionization mass spectrometry.- 17.1 Introduction.- 17.2 Ion production.- 17.3 Rubidium-strontium isotope analysis.- 17.4 Neodymium-samarium isotope analysis.- 17.5 Lead, uranium and thorium isotope analysis.- 17.6 Isotope dilution.- 18 Gas source mass spectrometry.- 18.1 Geological applications.- 18.2 Instrumentation.- 18.3 The delta convention for reporting isotope data.- 18.4 Hydrogen isotope analysis.- 18.5 Carbon isotope analysis.- 18.6 Nitrogen isotope analysis.- 18.7 Oxygen isotope analysis.- 18.8 Sulphur isotope analysis.- 18.9 Noble gas analysis.- 18.10 Potassium-argon geochronometry.- 19 Spark source mass spectrometry.- 19.1 Introduction.- 19.2 Instrumentation and ion production.- 19.3 Internal standardization.- 19.4 Routine data acquisition.- 19.5 Photoplate calibration and element sensitivities.- 19.6 Applications and results.- 19.7 Future developments.- 20 Inductively coupled plasma-mass spectrometry.- 20.1 Introduction.- 20.2 Development of ICP-MS instrumentation: the plasma-mass spectrometer interface.- 20.3 The inductively coupled plasma as ion source.- 20.4 ICP-mass spectrometry instrumentation.- 20.5 Performance and applications.- 20.6 Internal standardization.- 20.7 Isotope dilution.- References.
「Nielsen BookData」 より