From logic to logic programming
著者
書誌事項
From logic to logic programming
(MIT Press series in the foundations of computing)
MIT Press, c1994
大学図書館所蔵 全43件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [197]-199) and index
内容説明・目次
内容説明
This mathematically oriented introduction to the theory of logic programming presents a systematic exposition of the resolution method for propositional, first-order, and Horn- clause logics, together with an analysis of the semantic aspects of the method. It is through the inference rule of resolution that both proofs and computations can be manipulated on computers, and this book contains elegant versions and proofs of the fundamental theorems and lemmas in the proof theory of logic programming. Advanced topics such as recursive complexity and negation as failure and its semantics are covered, and streamlined setups for SLD- and SLDNF-resolution are described. No other book treats this material in such detail and with such sophistication. Doets provides a novel approach to resolution that is applied to the first-order case and the case of (positive) logic programs. In contrast to the usual approach, the concept of a resolvent is defined nonconstructively, without recourse to the concept of unification, allowing the soundness and completeness proofs to be carried out in a more economic way. Other new material includes computability results dealing with analytical hierarchy, results on infinite derivations and an exposition on general logic programs using 3-valued logic.
目次
- Preliminaries - mathematical induction, trees, multisets, ordinals and cardinals
- propositional logic - syntax, semantics, conjunctive normal form, resolution
- first-order logic - syntax, semantics, quantifier-free sentences, universal sentences, Prenex and Skolem forms, resolution - the unrestricted version, unification, resolution
- program-definability - programs, the least Herbrand model, fixed points, hierarchies, definability, representing domains as Herbrand universes
- linear resolution - preliminaries, unrestricted linear resolution, ground completeness, linear resolution, SLD-resolution
- infinite derivations - negative information, non-standard algebras, resolution over non-standard algebras, realization trees, the interplay of SLD-trees and realization trees
- computability - preliminaries, computability of recursive functions, complexity of Tp
- negation - negation implemented - SLDNF, 3-valued models, 3-valued consequence operator, soundness, saturation, completeness for SLDNF.
「Nielsen BookData」 より