Perturbation theory in mathematical programming and its applications
Author(s)
Bibliographic Information
Perturbation theory in mathematical programming and its applications
(Wiley-Interscience series in discrete mathematics and optimization)
J. Wiley & Sons, c1994
Available at / 25 libraries
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science図書
dc20:519.7/l5792070300390
-
No Libraries matched.
- Remove all filters.
Note
Includes references (p. [367]-379) and index
Description and Table of Contents
Description
This volume represents the sum of the author's research in the local parametric optimization of finite-dimensional cases. It presents a complete formulation of the main perturbation theory problems for finite-dimensional optimization, as well as new mathematical methods to analyze these problems. Using a unified approach, the author has developed a general perturbation theory for finite-dimensional extremum problems. Within the framework of this theory, methods for studying perturbed problems in zero-, first-and second-order approximations have been developed.
Table of Contents
- PART I: FOUNDATIONS OF THEORY AND METHODS OF FINITE-DIMENSIONAL OPTIMIZATION: Basic Concepts, Problems and Fields of Applications of Perturbation Theory
- Perturbation Theory of Smooth Mathematical Programming Problems (Main Results)
- Examples of Studies in Parametric Optimization Problems, Applications of Perturbation Theory
- PART II: BASIC PERTURBATION THEORY IN FINITE-DIMENSIONAL OPTIMIZATION: Elements of Convex and Nonconvex Analysis
- Optimality Criteria in Generating Problems
- PART III: PERTURBATION THEORY IN MATHEMATICAL PROGRAMMING: General Perturbation Theory
- Perturbation Theory for Smooth Mathematical Programming Problems
- Perturbation Theory for Convex Programming Problems
- Theory of Minimax Perturbations under Bound Constraints.
by "Nielsen BookData"