An exploration of chaos : an introduction for natural scientists and engineers
Author(s)
Bibliographic Information
An exploration of chaos : an introduction for natural scientists and engineers
(Texts on computational mechanics, v. 7)
North-Holland, 1994
- : pbk
Available at 28 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
- Volume
-
ISBN 9780444820020
Description
This volume is intended as a detailed introduction to the theory of chaos and is addressed to physicists and engineers who wish to be acquainted with this new and exciting science associated with non-linear deterministic systems. Mathematics are a pre-requisite tool.
Table of Contents
Preface. 1. Descriptive Conspectus of the Text. 2. Preliminaries. Causality - determinism. Dynamical systems - examples. Phase space. First integrals and manifolds. Qualitative and quantitative approach. 3. Mathematical Introduction to Dynamical Systems. Linear autonomous systems. Non-linear systems and stability. Invariant manifolds. Discretisation in time. Poincare map. Fixed points and cycles of discrete systems. An example of discrete dynamics - the logistic map. 4. Dynamical Systems without Dissipation. Hamilton equations for conservative systems. Canonical transformations, integrability. f-dimensional tori and trajectories. An outline of the KAM theory. Unstable tori, chaotic regions. A numerical example: the Henon map. 5. Dynamical Systems with Dissipation. Volume contraction - a basic characteristic of dissipative systems. Strange attractor: Lorenz attractor. Power spectrum and autocorrelation. Lyapunov exponents. Dimensions. Kolmogorov-Sinai entropy. 6. Local Bifurcation Theory. Motivation. Centre manifold. Normal forms. Normal forms of bifurcations for one-parametric flows. Stability of bifurcations subject to perturbations. Bifurcations of the fixed points of one-parametric maps. Renormalisation and self-similarity with the example of the logistic map. A descriptive introduction to synergetics. 7. Convection Flows: Benard Problem. Basic hydrodynamic equations. Boussinesq-Oberbeck approximation. Lorenz model. Evolution of the Lorenz system. 8. Routes to Turbulence. Landau scenario. Ruelle-Takens scenario. Universal characteristics of the transition from quasi-periodicity to chaos. The Feigenbaum route to chaos via period doublings. Quasi-periodic transition for a fixed winding number. The route to chaos via intermittency. Routes out of chaos, control of chaos. 9. Computer Experiments. Introduction to bone remodelling processes. Henon map. The Lorenz system revisited. Van der Pol equation. Duffing equation. Julia sets and their ordering principle. Morphology of the Arnol'd tongues. Oscillatory kinetics of chemical reactions on solid surfaces. An apercu of chaotic behaviour in our solar system. Color Plates. Bibliography. Index.
- Volume
-
: pbk ISBN 9780444820037
Description
This volume is intended as a detailed introduction to the theory of chaos and is addressed to physicists and engineers who wish to be acquainted with this new and exciting science associated with non-linear deterministic systems. Mathematics are a pre-requisite tool.
Table of Contents
Preface. 1. Descriptive Conspectus of the Text. 2. Preliminaries. Causality - determinism. Dynamical systems - examples. Phase space. First integrals and manifolds. Qualitative and quantitative approach. 3. Mathematical Introduction to Dynamical Systems. Linear autonomous systems. Non-linear systems and stability. Invariant manifolds. Discretisation in time. Poincar6 map. Fixed points and cycles of discrete systems. An example of discrete dynamics - the logistic map. 4. Dynamical Systems without Dissipation. Hamilton equations for conservative systems. Canonical transformations, integrability. f-dimensional tori and trajectories. An outline of the KAM theory. Unstable tori, chaotic regions. A numerical example: the H6non map. 5. Dynamical Systems with Dissipation. Volume contraction - a basic characteristic of dissipative systems. Strange attractor: Lorenz attractor. Power spectrum and autocorrelation. Lyapunov exponents. Dimensions. Kolmogorov-Sinai entropy. 6. Local Bifurcation Theory. Motivation. Centre manifold. Normal forms. Normal forms of bifurcations for one-parametric flows. Stability of bifurcations subject to perturbations. Bifurcations of the fixed points of one-parametric maps. Renormalisation and self-similarity with the example of the logistic map. A descriptive introduction to synergetics. 7. Convection Flows: Benard Problem. Basic hydrodynamic equations. Boussinesq-Oberbeck approximation. Lorenz model. Evolution of the Lorenz system. 8. Routes to Turbulence. Landau scenario. Ruelle-Takens scenario. Universal characteristics of the transition from quasi-periodicity to chaos. The Feigenbaum route to chaos via period doublings. Quasi-periodic transition for a fixed winding number. The route to chaos via intermittency. Routes out of chaos, control of chaos. 9. Computer Experiments. Introduction to bone remodelling processes. H6non map. The Lorenz system revisited. Van der Pol equation. Doffing equation. Julia sets and their ordering principle. Morphology of the Amol'd tongues. Oscillatory kinetics of chemical reactions on solid surfaces. An apercu of chaotic behaviour in our solar system. Colour Plates. Bibliography. Index.
by "Nielsen BookData"