An introduction to Gröbner bases
Author(s)
Bibliographic Information
An introduction to Gröbner bases
(Graduate studies in mathematics, v. 3)
American Mathematical Society, c1994
Related Bibliography 1 items
Available at 78 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 279-281
Includes index
Description and Table of Contents
Description
As the primary tool for doing explicit computations in polynomial rings in many variables, Grobner bases are an important component of all computer algebra systems. They are also important in computational commutative algebra and algebraic geometry. This book provides a leisurely and fairly comprehensive introduction to Grobner bases and their applications.Adams and Loustaunau cover the following topics: the theory and construction of Grobner bases for polynomials with coefficients in a field, applications of Grobner bases to computational problems involving rings of polynomials in many variables, a method for computing syzygy modules and Grobner bases in modules, and the theory of Grobner bases for polynomials with coefficients in rings. With over 120 worked out examples and 200 exercises, this book is aimed at advanced undergraduate and graduate students. It would be suitable as a supplement to a course in commutative algebra or as a textbook for a course in computer algebra or computational commutative algebra. This book would also be appropriate for students of computer science and engineering who have some acquaintance with modern algebra.
Table of Contents
Basic theory of Grobner bases Applications of Grobner bases Modules and Grobner bases Grobner bases over rings Appendix A. Computations and algorithms Appendix B. Well-ordering and induction References List of symbols Index.
by "Nielsen BookData"