Ion cyclotron resonance spectrometry

著者

書誌事項

Ion cyclotron resonance spectrometry

edited by Hermann Hartmann, Karl-Peter Wanczek

(Lecture notes in chemistry, 7, 31)

Springer-Verlag, 1978-1982

  • : us : v. 1
  • : gw : v. 1
  • : us : v. 2
  • : gw : v. 2

大学図書館所蔵 件 / 16

この図書・雑誌をさがす

注記

Includes bibliographical references

内容説明・目次

巻冊次

: gw : v. 1 ISBN 9783540087601

内容説明

In this volume, for the first time, a dozen of papers is collected dealing with almost all important aspects of ion cyclotron resonance spectrometry. The ICR technique was developed very rapidly in the last two decades. It seems to the editors that the method is now established well enough to dedicate a progress report to it. This report is devided into three parts: The first articles pre- sent new developments in the theory of ICR spectrometry. They are fol~ lowed by papers on r.ecent developments of the experimental technique. About half of the volume is dedicated to applications of ICR spectrome- try to reactivity, reaction mechanism and structure in the chemistry of thermal ions. The editors are indebted to Mrs. A. Tin for typewrfting most of the manuscript and to Mrs. E. Jacke for reproduction of Figures appearing in the volume. Hermann Hartmann, Akademie der Wissenschaften und der Literatur Mainz Karl-Peter Wanczek Institut fur physikalische Chemie Universitat, Frankfurt/Main Contents Line Shapes in Ion Cyclotron Resonance Spectra A. H. Huizer and W. J. van der Hart 1 Quantum Mechanical Description of Collision- Dominated Ion Cyclotron Resonance H. Hartmann and K.-M. Chung 17 Improvement of the Electric Potential in the Ion Cyclotron Resonance Cell J. Urakawa, H. Shibata and M. Inoue 33 Thermodynamic Information from Ion-Molecule Equilibrium Constant Determinations S. G. Lias 59 Pulsed Ion Cyclotron Resonance Studies with a One-Region Trapped Ion Analyzer Cell R. T. McIver, Jr.

目次

Line Shapes in Ion Cyclotron Resonance Spectra.- Quantum Mechanical Description of Collision-Dominated Ion Cyclotron Resonance.- Improvement of the Electric Potential in the Ion Cyclotron Resonance Cell.- Thermodynamic Information from Ion-Molecule Equilibrium Constant Determinations.- Pulsed Ion Cyclotron Resonance Studies with a One-Region Trapped Ion Analyzer Cell.- Fourier Transform Ion Cyclotron Resonance Spectroscopy.- Mechanistic Studies of some Gas-Phase Reactions of O-? Ions with Organic Substrates.- Studies in the Chemical Ionization of Hydrocarbons.- Gas-Phase Polar Cycloaddition Reactions.- An Ion Cyclotron Resonance Study of an Organic Reaction Mechanism.- Positive and Negative Ionic Reactions at the Carbonyl Bond in the Gas-Phase.- Ion Chemistry of (CH3)3PCH2, (CH3)3PNH, (CH3)3PNCH3 and (CH3)3PO.
巻冊次

: gw : v. 2 ISBN 9783540119579

内容説明

In this volume 28 papers are presented. They cover all the fields studied with ion cyclotron resonance today, including reviews on important fields as well as short contributions on special topics. This report is devided into four parts: 1. Detailed studies on simple molecules, 2. Systematic studies of the ion chemistry, 3. Spectrometer development and 4. Theory. The plan to edit a progress report of the complete field was projected at the 2nd International Symposium on Ion Cyclotron Resonance Spectrometry, held at the Akademie der Wissenschaften und der Literatur, Mainz, March, 1981. Most of the contributions were written in late 1981 or in 1982. Hermann Hartmann Akademie der Wissenschaften und der Literatur Mainz Karl-Peter Wanczek Institut fUrphysikalische und theoretische Chemie Universitat, Frankfurt Acknowledgements The editors gratefully acknowledge support of the Symposium by the Stiftung Volkswagenwerk and the Fonds der Chemischen Industrie. The editors want to take the opportunity to thank H. Otten, President, Akademie der Wissenschaften und der Literatur, for the hospitality all the participants of the Symposium enjoyed. IV Delegates attending the 2nd International Symposium on Ion Cyclotron Reso- nance Spectrometry, Akademie der Wissenschaften und der Literatur, Mainz (numbers refer to the photograph) 26. D. Parent 1. M. B. Comisarow 2. 27. R. T. McIver, Jr.

目次

  • Table of Content.- Topics in Ion Photodissociation.- 1. Introduction.- 2. Experimental Aspects.- 3. Ion Spectroscopy.- 4. Ion Structure Studies.- 4.1.Chloropropene Ions.- 4.2.Benzyl Chloride Ion.- 4.3.Dien-Ion Rearrangements.- 5. Photofragmentation.- 6. Multi photon Photochemistry.- 6.1. Two-Photon Dissociation and Collisional Relaxation.- 6.2. Two-Laser Photodissociation.- References.- Ion Structures and Relaxation of Vibrationally Excited Ions as Studied by Photodissociation.- 1. Introduction.- 1.1. Photodissociation of Ions of One Structural Form.- 1.2. Photodissociation of a Mixture of Ions of Equal Mass.- 1.3. Relaxation of Ions Produced with a Large Amount of Internal Energy.- 1.4. Multiphoton Processes.- 2. Ion Structures.- 2.1. C6H6O*+ Ions.- 2.2. Alkene Ions.- 3. Relaxation in Single Photon Precesses, C2H4*+ Ions from Ethylene Oxide and 1,3-Dioxolane.- 4. Two Photon Processes.- References.- Infrared Photochemistry of Gas Phase Ions.- 1. Introduction.- 2. Experimental Section.- 3. Results.- 3.1. Multiphoton Dissociation of Ions with Low Intensity cw Infrared Radiation.- 3.1.1. Summary of Multiphoton Dissociation Results.- 3.1.2. Variation of Photodissociation Yield with Laser Wavelength.- 3.1.3. Effect of Collisions on Photodissociation Yield.- 3.1.4. Variation of Photodissociation Yield with Laser Irradiance.- 3.2. Applications of Multiphoton Dissociation.- 3.2.1. Multiphoton Excitation as a Probe of Bimolecular and Unimolecular Reaction Energetics.- 3.2.2. Multiphoton Dissociation as a Probe of Molecular Relaxation Rates.- 3.2.3. Multiphoton Dissociation as a Probe of the Vibrational Quasi-Continuum.- 3.2.4. Isotopic Selectivity in Multiphoton Dissociation.- 3.2.5. Isomeric Selectivity in Multiphoton Dissociation.- 3.3. Multiphoton Electron Detachment from Negative Ions.- 3.4. Selective Enhancement of Bimolecular Reaction Rates Using Low Intensity cw Laser Radiation.- 4. Prognosis.- References.- Study of Atomic Metal Ions Generated by Laser Ionization.- 1. Metal Ion Chemistry.- 2. Kinetic Energy of Laser Generated Ions. A Comparison of Techniques.- 3. Fourier Transform Mass Spectrometry.- References.- Gas-Phase Atomic Metal Cations. Ligand Binding Energies, Oxidation Chemistry and Catalysis.- 1. Introduction.- 2. Ligand Dissociation Enthalpies.- 3. Cooperative Bonding Effects.- 4. Metal Oxide Cations.- 5. Catalysis 135.- References.- Transition Metal Ions in the Gas Phase.- 1. Introduction.- 2. Electronically Excited Cr+.- 3. Reactions of Diatomic Metal Ions.- 4. Reactions of Cyclic Ketones.- References.- Elucidation of the Transfer Mechanism in Ion-Molecule Reactions by ICR.- 1. Introduction.- 2. Experimental.- 3. Results and Discussion.- 4. Conclusion.- References.- Equilibrium Studies of Electron Transfer Reactions.- 1. Introduction.- 2. Electron Affinities: Theoretical Considerations.- 3. Experimental Methods for Measuring Electron Affinities.- 4. Pulsed ICR Techniques for Negative Ions.- 5. Results for Equilibrium Electron Transfer Equilibria.- 6. Discussion 179.- References.- ICR Study of Negative Ions Produced by Electron Impact in Water Vapor.- 1. Introduction.- 2. Experimental.- 3. Results.- 4. Discussion.- References.- Reactions with Alkoxide Anions.- 1. Introduction.- 2. Experimental.- 3. Results.- 4. Discussion.- 4.1. Internal Energy.- 4.2. Enolate Formation.- 4.3. CID Experiments.- 4.4. Labelled Reactants.- References.- A Fourier Transform Ion Cyclotron Resonance Study of Negative Ion-Molecule Reactions of Phenyl Acetate, Phenyl Trifluoroacetate and Acetanilide.- 1. Introduction.- 2. Results and Discussion.- 2.1. Phenyl trifluoroacetate.- 2.1.1. Primary Ions.- 2.1.2. H2O/C6H5OCOCF3.- 2.2. Acetanilide.- 2.3. Phenyl acetate.- 2.3.1. H2O/C6H5OCOCH3.- 2.3.2. H2O/CH3OCH3/C6H5OCOCH3.- 3. Conclusion.- 4. Experimental Section.- References.- Site of Protonation in Gaseous Five-Membered Ring Systems C4H4X(X=NH,O,S,CH2).- 1. Introduction.- 2. Experimental.- 3. Results and Discussion.- 3.1. Equilibrium Proton Affinities.- 3.2. Basicity at the ?-Carbon Atom.- References.- Gas-Phase Radical-Ion Cycloadditions: Experiment and Theory.- 1. Introduction.- 2. Radical-Ion versus Neutral-Neutral Chemistry.- 3. Cycloaddition Pathways in Ion-Neutral Reactions.- 3.1. Product Distributions.- 3.2. Detection of Cyclic "Activated Adduct"-Fragment Ions.- 3.3. Isotope Label Distributions in Product Ions.- 3.4. Collision Induced Dissociation of Collision Stabilized Intermediates.- 4. Frontier Molecular Orbital Theory of Radical-Ion-Neutral Cycloaddition.- 4.1. Requirements for a Cycloaddition Pathway.- 4.2. Application of the Theory to the Reaction of Ful vene Radical Cation and 1,3-Butadiene.- 4.3. Correlation of Experiment and Theory.- 4.4. Difficulties with the Theory.- 5. Conclusion.- References.- Ring Ions in the Ion Chemistry of Thiirane, Ethanediol-1,2, Ethanedithiol-1,2 and 2-Mercaptoethanol.- 1. Introduction.- 2. Experimental.- 3. Results and Discussion.- 3.1. Thiirane.- 3.2. 2-Mercaptothanol, Ethanediol-1,2 and Ethanedithiol-1,2.- 3.3. General Discussion.- References.- Kinetic Energy of Fragment Ions Produced in Charge Transfer Reactions of He+ and Ar++ with CO.- 1. Introduction.- 2. He+/CO.- 3. Ar++/CO.- 4. Results.- 5. Discussion.- 6. Conclusion.- References.- A Tandem ICR Study of the Reaction of N2+ with SO2.- 1. Introduction.- 2. General Description of the Spectrometer.- 3. Experimental Procedures.- 4. Results and Discussion.- 5. Summary and Conclusion.- References.- Internal Energy Dependence of the Reaction of NH3+ with H2O
  • A Tandem ICR Study.- 1. Introduction.- 2. The Tandem Instrument.- 3. Internal Energy in NH3+.- References.- Precision Determination of Cyclotron Frequencies of Free Electrons and Ions.- 1. Introduction.- 2. Ion Traps.- 3. Trapped Particle Detection.- 4. Measurement of Fundamental Oscillatory Frequencies.- 5. Determination of Ion Masses.- 6. Summary.- References.- Toward a Frequency Scanning Marginal Oscillator.- 1. Introduction.- 2. Requirements.- References.- An FTICR Spectrometer - Design Philosophy and Practical Realisation.- 1. Introduction.- 2. Ion Excitation.- 3. Programmable Pulse Generator.- 4. Frequency Synthesizer.- 5. Bus Interface.- 6. Control Board.- 7. RAM II.- 8. RAM I, Scan Generator.- 9. The Synthesizer.- 10. Analogue Stages.- 11. Preamplifier.- 12. ADC and Fast Buffer Store.- References.- A Microcomputer-Based Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Detection System.- 1. Introduction.- 2. General Comments and Analogue Circuitry.- 2.1. Overall System Block Diagram.- 2.2. Excite and Detect Switches.- 2.3. Difference Amplifier and High-Pass Filter.- 2.4. Mixer.- 2.5. Low-Pass Filter and Amplifier.- 3. Digital Electronics.- 3.1. General Discussion.- 3.2. Timing Pulse Sequence.- 3.3. Dual Microcomputer System.- 4. Results and Discussion.- References.- FT ICR Spectrometry with a Superconducting Magnet.- 1. Introduction.- 2. Small-band and Broad-band Spectra.- 3. Sidebands.- 4. Mass Scale Calibration.- References.- Analytical Fourier Transform Mass Spectrometry.- 1. Introduction.- 2. High Mass Resolution.- 3. Precise and Accurate Mass Measurement.- 4. Chemical Ionization.- 5. Gas Chromatography/Fourier Transform Mass Spectrometry.- References.- Thermochemical Information from Ion-Molecule Rate Constants.- 1. Introduction.- 2. The Measurement of Rate Constants of Corresponding Exothermic and Endothermic Reactions.- 3. Estimation of Thermochemical Information from Reaction Efficiencies as a Function of ?H Degrees or ?G Degrees of Reaction.- 4. Thermochemical Information from the Temperature Dependence of the Rate Constants of Endothermic Reactions.- 5. Primary Standards for the Proton Affinity Scale.- 6. Ionization Energies of Al kanes.- References.- Ion-Molecule Association Reactions.- 1. Introduction.- 2. Experimental Analysis.- 3. Theoretical Analysis.- 4. Examples.- 4.1. The Proton-Bound Dimers of Ammonia and the Methyl amines.- 4.2. The Radiative and Three-Body Association Reaction of CH3+ with HCN.- 4.3. The Clustering Reactions of Methanol with Its Protonated Ion.- 5. Summary.- References.- Theory for Pulsed and Rapid Scan Ion Cyclotron Resonance Signals.- 1. Introduction.- 2. Theory.- 2.1. Basic Concepts.- 2.2. Transient Response of the CBD - A Simplified Approach.- 2.3. Transient Response of the CBD to Rapid Scan Excitation.- 3. Performance Tests.- 3.1. Pulsed ICR.- 3.2. Rapid Scan ICR.- 4. Conclusions.- References.- Signals, Noise, Sensitivity and Resolution in Ion Cyclotron Resonance Spectroscopy.- 1. Introduction.- 2. ICR Signal Generation.- 3. ICR Linewidth and ICR Mass Resolution.- 4. Spectroscopic Relaxation and Spectroscopic Linewidth.- 5. Homogeneous and Inhomogeneous Relaxation and Line Broadening.- 6. Radiation Damping of Excited Cyclotron Motion.- 7. Resistive Damping of Excited Cyclotron Motion.- 8. Collisional Damping of Excited Cyclotron Motion.- 9. Doppler Relaxation of Excited ICR Motion.- 10. Relaxation Due to Magnetic Field Inhomogenieties.- 11. Relaxation Due to Electric Field Gradients.- 12. Noise and Sensitivity in ICR Spectrometers.- References.- Theoretical Tools for the Description of Ion Motion in ICR Spectrometry.- 1. Methods for the Description of Ion Motion.- 1.1. Classical Particle Mechanics.- 1.2. Quantum Theoretical Description.- 2. Homogeneous Magnetic Field B? = (0,0,B) and Electric Fields of Increasing Complexity.- 2.1. Schroedinger Equation of a Charged Particle Exclusively Influenced by a Homogeneous Magnetic Field.- 2.1.1. Wave Packet Solution.- 2.2. Consideration of Drift Motion.- 2.3. Consideration of Trapping Motion.- 2.4. Consideration of the Actual Electric Potential.- 3. More Complicated Magnetic Field B? = (O,B,,,B?).- 3.1. Classical Treatment.- 3.2. Basis for a Quantum Mechanical Treatment.- 4. Velocity Dependent Frictional Forces.- 4.1. One-dimensional Damped Harmonic Oscillator.- 4.2. Two-dimensional Damped Motion in a Magnetic Field.- 4.3. Three-dimensional Damped Motion in Magnetic and Electric Fields.- 5. Conclusion.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ