Numerical integration of stochastic differential equations
著者
書誌事項
Numerical integration of stochastic differential equations
(Mathematics and its applications, v. 313)
Kluwer Academic Publishers, c1995
- タイトル別名
-
Chislennoe integrirovanie stokhasticheskikh different︠s︡ialʹnykh uravneniĭ
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 165-168
Includes index
内容説明・目次
内容説明
U sing stochastic differential equations we can successfully model systems that func- tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas- tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math- ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), ~~ (Xx(t))) dt.
目次
Introduction. 1: Mean-square approximation of solutions of systems of stochastic differential equations. 1. Theorem on the order of convergence (theorem on the relation between approximation on a finite interval and one-step approximation). 2. Methods based on an analog of Taylor expansion of the solution. 3. Explicit and implicit methods of order 3/2 for systems with additive noises. 4. Optimal integration methods for linear systems with additive noises. 5. A strengthening of the main convergence theorem. 2: Modeling of Ito integrals. 6. Modeling Ito integrals depending on a single noise. 7. Modeling Ito integrals depending on several noises. 3: Weak approximation of solutions of systems of stochastic differential equations. 8. One-step approximation. 9. The main theorem on convergence of weak approximations and methods of order of accuracy two. 10. A method of order of accuracy three for systems with additive noises. 11. An implicit method. 12. Reducing the error of the Monte Carlo method. 4: Application of the numerical integration of stochastic equations for the Monte Carlo computation of Wiener integrals. 13. Methods of order of accuracy two for computing Wiener integrals of functionals of integral type. 14. Methods of order of accuracy four for computing Wiener integrals of functionals of exponential type. Bibliography. Index.
「Nielsen BookData」 より