Silverman's game : a special class of two-person zero-sum games
著者
書誌事項
Silverman's game : a special class of two-person zero-sum games
(Lecture notes in economics and mathematical systems, 424)
Springer-Verlag, c1995
大学図書館所蔵 全58件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 279-280) and index
内容説明・目次
内容説明
The structure of a Silverman game can be explained very quickly: Each of two players independently selects a number out of a prede termined set, not necessarily the same one for both of them. The higher number wins unless it is at least k times as high as the other one; if this is the case the lower number wins. The game ends in a draw if both numbers are equal. k is a constant greater than 1. The simplicity of the rules stimulates the curiosity of the the orist. Admittedly, Silverman games do not seem to have a direct applied significance, but nevertheless much can be learnt from their study. This book succeeds to give an almost complete overview over the structure of optimal strategies and it reveals a surprising wealth of interesting detail. A field like game theory does not only need research on broad questions and fundamental issues, but also specialized work on re stricted topics. Even if not many readers are interested in the subject matter, those who are will appreciate this monograph.
目次
1. Introduction.- Survey of prior work.- The payoff function and expected payoffs.- The sequences {pk} and {vk}.- The sequences {Vk} and {Uk}.- Equivalent variations.- 2. Silverman's game on intervals: preliminaries.- The key mixed strategies.- 3. Intervals with equal left endpoints or equal right endpoints.- The regions LAn, and equal right endpoints.- Case 1. [(1, B)] x [(1, B)].- Case 2. [(1, B)] x [(1, D)],1 < B < D.- Case 3. [(1, B)] x [(A, B)], 1 < A < B.- 4. Intervals with no common endpoints.- Case 4. [(1, B)] x [(A, D)], 1 < A < B < D.- Case 5. [(1, D)] x [(A, B)], 1 < A < B < D.- Case 6. [(1, B)] x [(A, D)], 1 < B ? A < D.- Appendix. Multisimilar distributions.- 5. Reduction by dominance.- Type A dominance.- Type B dominance.- Type C dominance.- Type D dominance.- Semi-reduced games.- 6. The further reduction of semi-reduced games.- Games with |M| = 1. (Reduction to 2 x 2.).- Games with M = 0 which reduce to odd order.- Games with M = 0 which reduce to even order.- 7. The symmetric discrete game.- The symmetric game with v ? 1.- The symmetric game with v < v(n).- 8. The disjoint discrete game.- The disjoint game with v ? 1.- The disjoint game with v < 1.- 9. Irreducibility and solutions of the odd-order reduced games.- The reduced game matrix A and the associated matrix B.- The polynomial sequences.- The odd-order game of type (i).- The odd-order game of type (ii).- The odd-order game of type (iii).- The odd-order game of type (iv).- 10. Irreducibility and solutions of the even-order reduced games.- The reduced game matrix A and the associated matrix B.- Further polynomial identities.- The even-order game of type (i).- The even-order games of types (ii) and (iii).- The even-order game of type (iv).- 11. Explicit solutions.- The game on intervals.- The symmetric discrete game.- The disjoint discrete game.- The reduced discrete game.- Semi-reduced balanced discrete games with no changes of sign on the diagonal.- Maximally eccentric games.- References.
「Nielsen BookData」 より