Physics experiments using PCs : a guide for instructors and students

書誌事項

Physics experiments using PCs : a guide for instructors and students

H.M. Staudenmaier (ed.)

Springer, c1993

1st ed., Springer study ed

大学図書館所蔵 件 / 14

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Physics practical classes form an important part of many scientific and technical courses in higher education. In addition to the older standard experiments, such practicals now generally include a few computer-controlled experiments developed in association with the research groups active in the particular university or college. Since there is relatively little exchange of information between the teaching staff of different institutes, the personal computer, despite its ubiquity, is underexploited in this role as a teaching aid. The present book provides a detailed description of a number of computer-controlled experiments suitable for practical classes. Both the relevant physics and the computational techniques are presented in a form that enables the readers to construct and/or perform the experiment themselves.

目次

  • I Mechanics.- 1. Fourier Analysis of Some Simple Periodic Signals.- 1.1 Apparatus.- 1.2 Programs.- 1.3 Experiments.- 1.3.1 Simple Harmonic Wave.- 1.3.2 Beats.- 1.3.3 Amplitude Modulation.- 1.3.4 Rectangles.- 1.4 Didactic and Pedagogical Aspects.- References.- Appendix 1.A.- 2. Point Mechanics by Experiments - Direct Access to Motion Data.- 2.1 Introduction.- 2.2 ORVICO.- 2.2.1 Principle.- 2.2.2 Hardware.- 2.2.3 Software.- 2.3 Examples.- 2.3.1 Ballistic Motion.- 2.3.2 The Rigid Pendulum.- 2.3.3 Frame of Reference.- 2.3.4 Statistical Motion on an Air Table.- 2.3.5 Spheric Pendulum.- 2.3.6 Two Point Masses Observed.- 2.4 Conclusion.- References.- II Thermodynamics.- 3. Application of PID Control to a Thermal Evaporation Source.- 3.1 Introduction.- 3.2 The System to be Controlled: An Inert-Gas-Aggregation Source.- 3.2.1 Background.- 3.2.2 The Inert-Gas-Aggregation Technique.- 3.2.3 A Description of a Real Inert-Gas-Aggregation Source.- 3.3 Description of the PID Control Algorithm.- 3.3.1 The PID Control Algorithm.- 3.4 Implementing the PID Algorithm on a Computer.- 3.4.1 Program Structure and the Use of Interrupts.- 3.5 Adjusting the PID.- 3.5.1 The Ziegler-Nichols' Methods.- 3.6 Possibilities Offered by the Leman Source.- 3.7 Conclusions.- Acknowledgements.- References.- 4. Computer Control of the Measurement of Thermal Conductivity.- 4.1 Thermal Conductivity.- 4.1.1 Measurement of Thermal Conductivity with Parallel Heat Flow.- 4.1.2 Measurement of Thermal Conductivity with Non-Parallel Heat Flow.- 4.2 Experimental Considerations.- 4.2.1 The Thermocouple as a Temperature Measuring Device.- 4.2.2. The AD595 Thermocouple Amplifier Integrated Circuit.- 4.2.3 Thermocouple Accuracy.- 4.2.4 Calibration of the Thermocouples.- 4.2.5 Thermocouple Selection Multiplexing Circuit.- 4.2.6 Multiplexor Control.- 4.2.7 The IEEE-488 Bus Interface Unit.- 4.2.8 The Control and Measurement Software.- 4.2.9 Discussion of the Experiment.- 4.3 The Computer Simulation.- References.- Appendix 4.A.- Appendix 4.B.- III Solid State Physics.- 5. Experiments with High-Tc Superconductivity.- 5.1 Experimental Setup.- 5.1.1 The Apparatus.- 5.1.2 Electronics.- 5.1.3 Computer, Interface and Software.- 5.2 Measurements.- 5.2.1 Resistance Measurement.- 5.2.2 Tunnel Diode Oscillator Measurement.- 5.3 Results.- 5.3.1 Detailed Analysis of the Resistance and TDO Measurements.- 5.3.2 Thermodynamic and Calorimentric Results.- 5.3.3 Experience Within the Laboratory Course.- References.- Appendix 5.A: Electric Circuit Diagrams.- Appendix 5.B: Spline Fit Program SPLFIT.- 6. Computer Control of Low Temperature Specific Heat Measurement.- 6.1 Basic Physics.- 6.1.1 Specific Heat.- 6.1.2 Low Temperature Specific Heat.- 6.1.3 The Debye Model for the Specific Heat.- 6.1.4 Specific Heat Anomalies.- 6.2 Experimental Setup.- 6.2.1 Specimen.- 6.2.2 Apparatus.- 6.2.3 Electronics.- 6.2.4 Microcomputer Control.- 6.3 Measurements and Results.- 6.3.1 Measurement Principles.- 6.3.2 Using the Computer Program.- 6.3.3 Typical Results.- 6.4 Discussion.- References.- Appendix 6.A: Circuit Diagrams.- Appendix 6.B: Program Listing.- 7. Computer-Controlled Observations of Surface Plasmon-Polaritons.- 7.1 Introduction.- 7.2 A Computer-Controlled ATR Experiment.- 7.2.1 Prism Geometry.- 7.2.2 Computer Control of ATR Measurements.- 7.3 Comments on the Mechanics Design and the Computer Interface.- 7.4 Conclusion.- References.- IV Optics and Atomic Physics.- 8. Molecular Spectroscopy of I2.- 8.1 Introduction.- 8.2 Some Basic Physics of the Diatomic Molecule.- 8.3 Experimental Setup.- 8.3.1 The Classical Arrangement.- 8.3.2 Extensions: Online Use of a Computer.- 8.4 Measurements.- 8.4.1 Calibration of the System.- 8.4.2 Recording the Absorption Spectra.- 8.4.3 Recording the Fluorescence Spectra.- 8.4.4 Some Additional Features of the Program LAmDA.- 8.5 Analysis of the Spectra Using the Program JOD.- 8.5.1 Analysis of Absorption Spectra.- 8.5.2 Some Optional Exercises.- 8.6 Pedagogical Aspects.- References.- 9. Optical Transfer Functions.- 9.1 Introduction.- 9.2 Mathematical Tools.- 9.2.1 Fourier Transforms.- 9.2.2 Theory of Transfer Functions.- 9.2.3 Imaging with Space Invariant Systems.- 9.2.4 Coherent Optics.- 9.2.5 Incoherent Optics.- 9.2.6 Exercises and Questions.- 9.3 Experimental Set Up.- 9.3.1 Preliminary Considerations.- 9.3.2 The Optics.- 9.3.3 The Test Object.- 9.3.4 The Electronics.- 9.3.5 The Adjustment.- 9.3.6 The Software for Experimentation and Evaluation.- 9.4 Evaluation.- 9.4.1 The Tasks.- 9.4.2 The General Procedure of Evaluation.- 9.4.3 Influence of the Detector Slit.- 9.4.4 Pure Defect of Focus.- 9.4.5 Diffraction and Defect of Focus.- 9.4.6 Quasi-Coherent Illumination.- 9.5 Didactic and Pedagogical Aspects.- 9.5.1 Goals.- 9.5.2 Interpretation of Data.- 9.5.3 Presentation of Data.- 9.5.4 Complications and Limitations of the Model.- 9.5.5 Applications of Fourier Optics.- Appendix 9.A: Diffraction by a Sector Star.- References.- V Nuclear Physics.- 10. Nuclear Spectrometry Using a PC Converted to a Multichannel Analyser.- 10.1 Introduction.- 10.1.1 Hardware Concept.- 10.1.2 Target Group.- 10.1.3 MCA Design Alternatives.- 10.2 Basic Physics.- 10.2.1 Interaction of Electromagnetic Radiation with Matter.- 10.2.2 Absorption of Electromagnetic Radiation in Matter.- 10.2.3 Interaction of Particle Radiation with Matter.- 10.2.4 Bremsstrahlung.- 10.2.5 X-Ray Fluorescence.- 10.3 Detectors and Measuring Equipment.- 10.3.1 Scintillation Detectors for ? and ? Spectrometry.- 10.3.2 Signal Recording Equipment
  • the Multichannel Analyser.- 10.3.3 Energy Resolution of a Detector.- 10.3.4 Radiation Detection Efficiency.- 10.4 Experimental Setup.- 10.4.1 Hardware Setup.- 10.4.2 General Structure of the MCA Program
  • Program Kernel.- 10.4.3 MCA Program Menues.- 10.5 Experiments.- 10.5.1 General Considerations.- 10.5.2 ?-Ray Absorption
  • Radiation Intensity Buildup by Compton Interaction.- 10.5.3 ? Spectrum
  • Energy Loss of Electrons in Matter.- 10.6 Student Reactions.- References.- 11. Parity Violation in the Weak Interaction.- 11.1 Introduction.- 11.2 Basic Physics.- 11.3 Experimental Setup.- 11.3.1 Electronics.- 11.3.2 Software.- 11.4 Measurements and Results.- 11.4.1 General Remarks.- 11.4.2 Energy Calibration.- 11.4.3 Background Measurement.- 11.4.4 Measurement of the ? Polarization.- 11.4.5 Results and Discussion.- 11.5 Didactic and Pedagogical Aspects.- References.- 12. Receiving and Interpreting Orbital Satellite Data. A Computer Experiment for Educational Purposes.- 12.1 Introduction.- 12.2 The UoSAT Satellites.- 12.3 The Receiving System.- 12.4 Discriminating Valid Data from Noise and Interference.- 12.5 The Real Time Data Acquisition System.- 12.6 Whole Orbit Data Analysis.- 12.7 Practical Experience and Further Aspects.- Acknowledgements (from the third author).- References.

「Nielsen BookData」 より

詳細情報

ページトップへ