Numerical methods for the solution of ill-posed problems
Author(s)
Bibliographic Information
Numerical methods for the solution of ill-posed problems
(Mathematics and its applications, v. 328)
Kluwer Academic Publishers, c1995
- Uniform Title
-
Chislennye metody reshenii︠a︡ nekorrektnykh zadach
Available at 38 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 239-251
Includes index
Description and Table of Contents
Description
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms.
The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.).
Besides the theoretical material, the book also contains a FORTRAN program library.
Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.
Table of Contents
Preface to the English edition. Introduction. 1. Regularization methods. 2. Numerical methods for the approximate solution of ill-posed problems on compact sets. 3. Algorithms for the approximate solution of ill-posed problems on special sets. 4. Algorithms and programs for solving linear ill-posed problems. Appendix: Program listings. Postscript. Index.
by "Nielsen BookData"