Energy transduction in biological membranes : a textbook of bioenergetics
Author(s)
Bibliographic Information
Energy transduction in biological membranes : a textbook of bioenergetics
(Springer study edition)
Springer-Verlag, c1991
- : us
- : gw
Related Bibliography 1 items
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. [475]-533
Solutions to homework problems: p.[549]-575
Errata:p.[577]-579
"This Springer-Verlag study edition was originally published as a hard cover edition"
Description and Table of Contents
- Volume
-
: us ISBN 9780387975337
Description
Energy Transduction in Biological Membranes was primarily designed for graduate courses in bioenergetics. Not only does it discuss basic principles and concepts central to modern membrane biochemistry, biophysics and molecular biology, but also (1) the components and pathways for electron transport and hydrogen ion translocation, and (2) the utilization of electrochemical ion gradients. The book is unique in presenting a comparative treatment of respiratory and photosynthetic energy transduction, and in using protein sequence data coupled with physical concepts to discuss the mechanisms of energy transducing proteins.
Table of Contents
- I Principles of Bioenergetics.- 1 Thermodynamic Background.- 1.1 Introduction: The First Law of Thermodynamics.- 1.2 Reaction, Direction, Disorder: The Need for the Second Law.- 1.3 On Entropy and the Second Law of Thermodynamics.- 1.4 Maximum Work.- 1.5 Free Energy.- 1.6 Concentration Dependence of the Gibbs Free Energy.- 1.7 Free Energy Change of a Chemical Reaction.- 1.8 Temperature Dependence of Keq.- 1.9 Other Kinds of Work: Electrical, Chemical Work.- 1.10 Thermodynamics of Ion Gradients.- 1.11 Thermodynamics of $$ \Delta {\tilde \mu_{<!-- -->{H^{+} }}} $$-Linked Active Transport.- 1.12 Thermodynamics of $$ \Delta {\tilde \mu_{<!-- -->{H^{+} }}} $$-Linked ATP Synthesis.- 1.13 Nonequilibrium Thermodynamics.- 1.14 "High-Energy" Bonds.- 1.15 Summary.- Problems.- 2 Oxidation-Reduction
- Electron and Proton Transfer.- 2.1 Direction of Redox Reactions.- 2.2 The Scale of Oxidation-Reduction Potentials.- 2.3 Oxidation-Reduction Potential as a Group-Transfer Potential
- Comparison of Standard Potentials and pK Values.- 2.4 Calculation of the Potential Change for Linked and Coupled Reactions.- 2.5 Concentration Dependence of the Oxidation-Reduction Potential.- 2.6 Experimental Determination of E and Em Values.- 2.7 Factors Affecting the Redox Potential.- 2.8 Redox Properties of Quinones and Semiquinones.- 2.9 Midpoint Potentials of Electrons in Photo-Excited States: Application to Photosynthetic Reaction Centers.- 2.10 Electron Transfer Mechanisms.- 2.11 Proton Transfer Reactions.- 2.12 Summary.- Problems.- 3 Membrane Structure and Storage of Free Energy.- 3.1 Elements of Membrane Structure.- 3.2 Introduction to the Energy Storage Problem.- 3.3 The Chemiosmotic Hypothesis.- 3.4 Measurement of ?pH and ?? Across Energy-Transducing Membranes.- 3.5 Relationship Between ?? and Charge Movement Across the Membrane.- 3.6 Experimental Tests of the Chemiosmotic Hypothesis.- 3.7 A Naturally Occurring Uncoupler: The Uncoupling Protein from Brown Fat Mitochondria.- 3.8 Effect of Uncouplers on Electron Transport Rate.- 3.9 Proton Requirement (H+/ATP) for Reversible ATP Synthase.- 3.10 Storage of Energy in $$ \Delta {\tilde \mu_{<!-- -->{H^{+} }}} $$.- 3.11 Sufficiency of the Chemiosmotic Framework.- 3.12 Appendix. Ionophores.- 3.13 Summary.- Problems.- II Components and Pathways for Electron Transport and H+ Translocation.- 4 Metalloproteins.- 4.1 Heme Proteins, Cytochromes a through d, and o.- 4.2 Occurrence of b Cytochromes.- 4.3 Structure of Cytochrome c.- 4.4 Structure-Function in Mitochondrial Cytochrome c.- 4.5 Residues of Reaction Partners That Are Complementary to Cytochrome c Lysines.- 4.6 Diffusion and Orientability of Cytochrome c.- 4.7 Membrane-Bound c-Type Cytochromes: Cytochromes c1 and f.- 4.8 Copper Proteins: Plastocyanin.- 4.9 Iron-Sulfur Proteins.- 4.10 Membrane-Bound Iron-Sulfur Proteins.- 4.11 The Membrane-Bound FeS-Flavoprotein, Succinate: Ubiquinone Oxidoreductase (Complex II).- 4.12 Summary.- Problems.- 5 The Quinone Connection.- 5.1 Structures, Stoichiometry, Pools, and Branch Points.- 5.2 Reconstitution of Quinone Function Requires Qn with n ? 3.- 5.3 The Quinone Pool Is Located Near the Center of the Membrane Bilayer.- 5.4 The Quinone Connection Across the Center of the Membrane.- 5.5 Quinone Lateral Mobility.- 5.6 The Segregation of Electron Transport Components in Thylakoids Requires Lateral Mobility of Quinone.- 5.7 Quinone-Binding Proteins.- 5.8 Quinone Electron Acceptors in Photosynthetic Reaction Centers.- 5.9 Quinone-Binding Proteins in Photosynthetic Reaction Centers.- 5.10 Summary.- Problems.- 6 Photosynthesis: Photons to Protons.- 6.1 Light Energy Transfer.- 6.2 Use of Energy Transfer as a Spectroscopic Ruler.- 6.3 Light Energy Transfer in Photosynthesis: The Phycobilisome.- 6.4 Structures of Photosynthetic Antenna Pigment-Protein Complexes.- 6.5 Structure of Photosynthetic Reaction Centers.- 6.6 Structure of the Reaction Center Proteins: Transmembrane Charge Separation.- 6.7 Reaction Centers of Plant and Algal PS I and II.- 6.8 Photosynthetic Water Splitting, O2 Evolution, and Proton Release by PS II.- 6.9 The Cyclic and Noncyclic Electron Transfer Chains.- 6.10 Summary.- Problems.- 7 Light and Redox-Linked H+ Translocation: Pumps, Cycles, and Stoichiometry.- 7.1 Introduction.- 7.2 Bacteriorhodopsin, a Well-Characterized Light-Driven H+ Pump.- 7.3 Cytochrome Oxidase (Mitochondrial Complex IV) as a Proton Pump.- 7.4 The Q Cycle and H+ Translocation in Complex III and Chloroplast b6f Complexes.- 7.5 H+ Translocation or Deposition Sites in the Mitochondrial, Chromatophore, and Chloroplast Electron Transport Chains
- Stoichiometrics of H+ Translocation and ATP Synthesis.- 7.6 Summary.- Problems.- III Utilization of Electrochemical Ion Gradients.- 8 Transduction of Electrochemical Ion Gradients to ATP Synthesis.- 8.1 Introduction to the Structure and Function of the ATP Synthase.- 8.2 Preparation of H+-ATPase.- 8.3 Structure of F0Fl ATP Synthase.- 8.4 DNA Sequence of Unc Operon.- 8.5 Function of the Membrane-Bound Subunits a, b, and c.- 8.6 Mechanism of ATP Synthesis.- 8.7 Thermodynamic and Kinetic Constants for ATP Hydrolysis.- 8.8 Mechanism of Transduction of $$ \Delta {\tilde \mu_{N{a^{+} }}} $$ to ATP.- 8.9 Other Classes of H+-Translocating ATPases.- 8.10 Summary.- Problems.- 9 Active Transport.- 9.1 Introduction.- 9.2 Evidence for Protein Carrier-Mediated Transport.- 9.3 Techniques for Studying Transport in Bacteria.- 9.4 Structure of the Cell Envelope of Gram-Negative Bacteria.- 9.5 $$ \Delta {\tilde \mu_{N{a^{+} }}} $$ Formation in Bacteria.- 9.6 Active Transport of Sugars Coupled to H+ Cotransport.- 9.7 Kinetic Studies.- 9.8 Structure/Function Considerations.- 9.9 Amino Acid Transport.- 9.10 Sodium-Dependent Transport.- 9.11 Transport Driven by High-Energy Phosphate Intermediates.- 9.12 Periplasmic Transport Systems.- 9.13 Motility.- 9.14 Active Transport in Eukaryotes.- 9.15 Transport or Translocation of Macromolecules.- 9.16 Summary.- Appendix I Answers to Problems.- Appendix II Physical, Chemical, and Biochemical Constants.- Appendix III Prediction of Protein Folding in Membranes.- References.- Glossary of Abbreviations.
- Volume
-
: gw ISBN 9783540975335
Description
This text was primarily designed for graduate courses in bioenergetics. It discusses basic principles and concepts central to modern membrane biochemistry, biophysics and molecular biology, the components and pathways for electron transport and hydrogen ion translocation, and the utilization of electrochemical ion gradients. The book presents a comparative treatment of respiratory and photosynthetic energy transduction, and uses protein sequence data coupled with physical concepts to discuss the mechanisms of energy transducing proteins.
by "Nielsen BookData"