The mathematics of generalization : the proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning
Author(s)
Bibliographic Information
The mathematics of generalization : the proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning
(Proceedings volume in the Santa Fe Institute studies in the sciences of complexity, v. 20)
Addison-Wesley Pub. Co., c1995
- : hbk.
- : pbk.
Available at 18 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Workshop held Aug. 1992 in Santa Fe, N.M
Includes bibliographical references and index
Description and Table of Contents
- Volume
-
: pbk. ISBN 9780201409833
Description
This book provides different mathematical frameworks for addressing supervised learning. It is based on a workshop held under the auspices of the Center for Nonlinear Studies at Los Alamos and the Santa Fe Institute in the summer of 1992.
Table of Contents
About the Santa Fe Institute -- Santa Fe Institute Studies in the Sciences of Complexity -- Preface -- The Status of Supervised Learning Science Circa 1994: The Search for a Consensus -- Reflections After Refereeing Papers for NIPS -- The Probably Approximately Correct (PAC) and Other Learning Models -- Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications -- The Relationship Between PAC, the Statistical Physics Framework, the Bayesian Framework, and the VC Framework -- Statistical Physics Models of Supervised Learning -- On Exhaustive Learning -- A Study of Maximal-Coverage Learning Algorithms -- On Bayesian Model Selection -- Soft Classification, a.k.a. Risk Estimation, via Penalized Log Likelihood and Smoothing Spline Analysis of Variance -- Current Research -- Preface to "Simplifying Neural Networks by Soft Weight Sharing" -- Simplifying Neural Networks by Soft Weight Sharing -- Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs -- Image Segmentation and Recognition
- Volume
-
: hbk. ISBN 9780201409857
Description
This volume grew out of a workshop designed to bring together researchers from different fields and includes contributions from workers in Bayesian analysis, machine learning, neural nets, PAC and VC theory, classical sampling theory statistics and the statistical physics of learning. The contributions present a bird's-eye view of the subject.
by "Nielsen BookData"