A primer of nonlinear analysis
著者
書誌事項
A primer of nonlinear analysis
(Cambridge studies in advanced mathematics, 34)
Cambridge University Press, 1995, c1993
First paperback edition (with corrections)
大学図書館所蔵 全36件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [165]-169
Includes index
内容説明・目次
内容説明
This is an introduction to nonlinear functional analysis, in particular to those methods based on differential calculus in Banach spaces. It is in two parts; the first deals with the geometry of Banach spaces and includes a discussion of local and global inversion theorems for differentiable mappings. In the second part, the authors are more concerned with bifurcation theory, including the Hopf bifurcation. They include plenty of motivational and illustrative applications, which indeed provide much of the justification of nonlinear analysis. In particular, they discuss bifurcation problems arising from such areas as mechanics and fluid dynamics. The book is intended to accompany upper division courses for students of pure and applied mathematics and physics; exercises are consequently included.
目次
- Preface
- Preliminaries and notation
- 1. Differential calculus
- 2. Local inversion theorems
- 3. Global inversion theorems
- 4. Semilinear Dirichlet problems
- 5. Bifurcation results
- 6. Bifurcation problems
- 7. Bifurcation of periodic solutions
- Further reading.
「Nielsen BookData」 より