A guide to quantum groups
著者
書誌事項
A guide to quantum groups
Cambridge University Press, 1995, c1994
- : pbk
大学図書館所蔵 全39件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"First paperback edition(with corrections) 1995"
Includes bibliographical references (p. [567]-637) and indexes
内容説明・目次
内容説明
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
目次
- Introduction
- 1. Poisson-Lie groups and Lie bialgebras
- 2. Coboundary Poisson-Lie groups and the classical Yang-Baxter equation
- 3. Solutions of the classical Yang-Baxter equation
- 4. Quasitriangular Hopf algebras
- 5. Representations and quasitensor categories
- 6. Quantization of Lie bialgebras
- 7. Quantized function algebras
- 8. Structure of QUE algebras: the universal R-matrix
- 9. Specializations of QUE algebras
- 10. Representations of QUE algebras: the generic case
- 11. Representations of QUE algebras: the root of unity case
- 12. Infinite-dimensional quantum groups
- 13. Quantum harmonic analysis
- 14. Canonical bases
- 15. Quantum group invariants of knots and 3-manifolds
- 16. Quasi-Hopf algebras and the Knizhnik-Zamolodchikov equation
- Appendix. The Kac-Moody algebras.
「Nielsen BookData」 より