Threshold graphs and related topics
著者
書誌事項
Threshold graphs and related topics
(Annals of discrete mathematics, 56)
Elsevier, 1995
大学図書館所蔵 全28件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and indexes
内容説明・目次
内容説明
Threshold graphs have a beautiful structure and possess many important mathematical properties. They have applications in many areas including computer science and psychology. Over the last 20 years the interest in threshold graphs has increased significantly, and the subject continues to attract much attention.The book contains many open problems and research ideas which will appeal to graduate students and researchers interested in graph theory. But above all Threshold Graphs and Related Topics provides a valuable source of information for all those working in this field.
目次
Preface. Basic Terminology. Threshold Graphs. Motivation. Basic characterizations. Minimizing integral weights. Perfect graphs and algorithms. Threshold and split completions. Longest cycles and Hamiltonicity. Total coverings and total matchings. Ferrers Digraphs and Difference Graphs. Introduction. Ferrers digraphs, characterizations. The Ferrers dimension. Difference graphs. Degree Sequences. Graphical degree sequences. Threshold sequences. The polytope of degree sequences. Difference sequences. Applications.Introduction. Aggregation of inequalities. Synchronization. Cyclic scheduling. Guttman scales. Split Graphs. Introduction. Basic properties. Hamiltonian split graphs. The splittance of a graph. The Threshold Dimension. Introduction. Bounds for the threshold dimension. Dimensional properties. Operations preserving the threshold dimension. Restricted threshold dimension. NP-Completeness. Introduction. The partial order dimension. Related NP-complete problems. Other complexity results. The split dimension. Polar graphs. 2-Threshold Graphs. Introduction. Properties of 2-threshold graphs. Bithreshold graphs. Strict 2-threshold graphs. Recognizing threshold dimension 2. Recognizing difference dimension 2. Intersection threshold dimension 2. The Dilworth Number. Introduction. Graphs of Dilworth number 2. The Dilworth number and perfect graphs. Box-Threshold Graphs. Introduction. Elementary properties. A transportation model. Frames of BT graphs. Matroidal and Matrogenic Graphs. Introduction. Matroidal graphs. Matrogenic graphs. Matrogenic sequences. Domishold Graphs. Introduction. Notation and main results. Equidominating graphs. Pseudodomishold graphs. The Decomposition Method. Introduction. The canonical decomposition. Domishold graphs and decomposition. Box-threshold graphs and decomposition. Matroidal and matrogenic graphs and decomposition. Pseudothreshold and Equistable Graphs. Introduction. Pseudothreshold graphs. Equistable graphs. Threshold Weights and Measures.Introduction. Threshold weights. Threshold measures. Threshold and majorization gaps. Threshold Graphs and Order Relations. Introduction. Biorders. Bidimensions. Relations of bidimension 2. Multiple semiorders. Enumeration. Introduction. Enumeration of threshold graphs. Enumeration of difference graphs. Extremal Problems. Introduction. Large interval and threshold subgraphs of dense graphs. Maximizing the sum of squares of degrees. Other Extensions. Introduction. Geometric embeddings of graphs. Tolerance intersection graphs. Universal threshold graphs. Bibliography. List of Notations. Author Index. Index.
「Nielsen BookData」 より