Linear programming : a modern integrated analysis
著者
書誌事項
Linear programming : a modern integrated analysis
(International series in operations research & management science, 1)
Kluwer Academic Publishers, 1995
大学図書館所蔵 全39件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
In Linear Programming: A Modern Integrated Analysis, both boundary (simplex) and interior point methods are derived from the complementary slackness theorem and, unlike most books, the duality theorem is derived from Farkas's Lemma, which is proved as a convex separation theorem. The tedium of the simplex method is thus avoided.
A new and inductive proof of Kantorovich's Theorem is offered, related to the convergence of Newton's method. Of the boundary methods, the book presents the (revised) primal and the dual simplex methods. An extensive discussion is given of the primal, dual and primal-dual affine scaling methods. In addition, the proof of the convergence under degeneracy, a bounded variable variant, and a super-linearly convergent variant of the primal affine scaling method are covered in one chapter. Polynomial barrier or path-following homotopy methods, and the projective transformation method are also covered in the interior point chapter. Besides the popular sparse Cholesky factorization and the conjugate gradient method, new methods are presented in a separate chapter on implementation. These methods use LQ factorization and iterative techniques.
目次
1 Introduction.- 1.1 The Problem.- 1.2 Prototype Problems.- 1.3 About this Book.- 1.4 Notes.- 2 Background.- 2.1 Real Analysis.- 2.2 Linear Algebra and Matrix Analysis.- 2.3 Numerical Linear Algebra.- 2.4 Convexity and Separation Theorems.- 2.5 Linear Equations and Inequalities.- 2.6 Convex Polyhedral Sets.- 2.7 Nonlinear System of Equations.- 2.8 Notes.- 3 Duality Theory and Optimality Conditions.- 3.1 The Dual Problem.- 3.2 Duality Theorems.- 3.3 Optimality and Complementary Slackness.- 3.4 Complementary Pair of Variables.- 3.5 Degeneracy and Uniqueness.- 3.6 Notes.- 4 Boundary Methods.- 4.1 Introduction.- 4.2 Primal Simplex Method.- 4.3 Bounded Variable Simplex Method.- 4.4 Dual Simplex Method.- 4.5 Primal - Dual Method.- 4.6 Notes.- 5 Interior Point Methods.- 5.1 Primal Affine Scaling Method.- 5.2 Degeneracy Resolution by Step-Size Control.- 5.3 Accelerated Affine Scaling Method.- 5.4 Primal Power Affine Scaling Method.- 5.5 Obtaining an Initial Interior Point.- 5.6 Bounded Variable Affine Scaling Method.- 5.7 Affine Scaling and Unrestricted Variables.- 5.8 Dual Affine Scaling Method.- 5.9 Primal-Dual Affine Scaling Method.- 5.10 Path Following or Homotopy Methods.- 5.11 Projective Transformation Method.- 5.12 Method and Unrestricted Variables.- 5.13 Notes.- 6 Implementation.- 6.1 Implementation of Boundary Methods.- 6.2 Implementation of Interior Point Methods.- 6.3 Notes.- A Tables.
「Nielsen BookData」 より