Limit theorems for the Riemann zeta-function
著者
書誌事項
Limit theorems for the Riemann zeta-function
(Mathematics and its applications, v. 352)
Kluwer Academic, c1996
大学図書館所蔵 全39件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
目次
Preface. 1. Elements of the probability theory. 2. Dirichlet series and Dirichlet polynomials. 3. Limit theorems for the modulus of the Riemann Zeta-function. 4. Limit theorems for the Riemann Zeta-function on the complex plane. 5. Limit theorems for the Riemann Zeta-function in the space of analytic functions. 6. Universality theorem for the Riemann Zeta-function. 7. Limit theorem for the Riemann Zeta-function in the space of continuous functions. 8. Limit theorems for Dirichlet L-functions. 9. Limit theorem for the Dirichlet series with multiplicative coefficients. References. Notation. Subject index.
「Nielsen BookData」 より