Lagrange and Finsler geometry : applications to physics and biology
著者
書誌事項
Lagrange and Finsler geometry : applications to physics and biology
(Fundamental theories of physics, v. 76)
Kluwer Academic Publishers, c1996
大学図書館所蔵 全33件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Since 1992 Finsler geometry, Lagrange geometry and their applications to physics and biology, have been intensive1y studied in the context of a 5-year program called "Memorandum ofUnderstanding", between the University of Alberta and "AL.1. CUZA" University in lasi, Romania. The conference, whose proceedings appear in this collection, belongs to that program and aims to provide a forum for an exchange of ideas and information on recent advances in this field. Besides the Canadian and Romanian researchers involved, the conference benefited from the participation of many specialists from Greece, Hungary and Japan. This proceedings is the second publication of our study group. The first was Lagrange Geometry. Finsler spaces and Noise Applied in Biology and Physics (1]. Lagrange geometry, which is concerned with regular Lagrangians not necessarily homogeneous with respect to the rate (i.e. velocities or production) variables, naturalIy extends Finsler geometry to alIow the study of, for example, metrical structures (i.e. energies) which are not homogeneous in these rates. Most Lagrangians arising in physics falI into this class, for example.
Lagrange geometry and its applications in general relativity, unified field theories and re1ativistic optics has been developed mainly by R. Miron and his students and collaborators in Romania, while P. Antonelli and his associates have developed models in ecology, development and evolution and have rigorously laid the foundations ofFinsler diffusion theory [1] .
目次
- Preface. Part One: Differential Geometry and Applications. On Deflection Tensor Field in Lagrange Geometries
- M. Anastasei. The Differential Geometry of Lagrangians which Generate Sprays
- M. Anastasiei, P.L. Antonelli. Partial Nondegenerate Finsler Spaces
- Gh. Atanasiu. Randers and Kropina Spaces in Geodesic Correspondence
- S. Bacso. Deviations of Geodesics in the Fibered Finslerian Approach
- V. Balan, P.C. Stavrinos. Sasakian Structures on Finsler Manifolds
- I. Hasegawa, et al. A New Class of Spray-Generating Lagrangians
- P. Antonelli, D. Hrimiuc. Some Remarks on Automorphisms of Finsler Bundles
- M.Sz. Kirkovits, et al. On Construction of Landsbergian Characteristic Subalgebra
- Z. Kovacs. Conservation Laws of Dynamical Systems via Lagrangians of Second Degree
- V. Marinca. General Randers Spaces
- R. Miron. Conservation Laws Associated to Some Dynamical Systems
- V. Obadeanu. Biodynamic Systems and Conservation Laws. Applications to Neuronal Systems
- V. Obadeanu, V.V. Obadeanu. Computational Methods in Lagrange Geometry
- M. Postolache. Phase Portraits and Critical Elements of Magnetic Fields Generated by a Piecewise Rectilinear Electric Circuit
- C. Udriste, et al. Killing Equations in Tangent Bundle
- M. Yawata. Lebesgue Measure and Regular Mappings in Finsler Spaces
- A. Neagu, V.T. Borcea. On a Finsler Metric Derived from Ecology
- H. Shimada. Part Two: Geometrical Models in Physics. A Moor's Tensorial Integration in Generalized Lagrange Spaces
- I. Gottlieb, S. Vacaru. The Lagrange Formalism Used in the Modelling of `Finite Range' Gravity
- I. Ionescu-Pallas, L. Sofonea. On the Quantization of the Complex Scalar Fields in S3xR Space-Time
- C. Dariescu, M.-A. Dariescu. Nearly Autoparallel Maps of Lagrange and Finsler Spaces
- S. Vacaru, S. Ostaf. Applications of Lagrange Spaces to Physics
- Gh. Zet. On the Differential Geometry of Nonlocalized Field Theory: Poincare Gravity
- P.C. Stavrinos, P. Manouselis.
「Nielsen BookData」 より