A first course in the numerical analysis of differential equations
著者
書誌事項
A first course in the numerical analysis of differential equations
(Cambridge texts in applied mathematics)
Cambridge University Press, 1996
- : hbk
- : pbk
大学図書館所蔵 全37件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.
目次
- Part I. Ordinary Differential Eqations: 1. Euler's method and beyond
- 2. Multistep methods
- 3. Runge-Kutta methods
- 4. Stiff equations
- 5. Error control
- 6. Nonlinear algebraic systems
- Part II. The Possion Equation: 7. Finite difference schemes
- 8. The finite element method
- 9. Gaussian elimination for sparse linear equations
- 10. Iterative methods for sparse linear equations
- 11. Multigrid techniques
- 12. Fast Poisson solvers
- Part III. Partial Differential Equations of Evolution: 13. The diffusion equation
- 14. Hyperbolic equations
- Appendix: a bluffer's guide to useful mathematics.
「Nielsen BookData」 より