Geomechanics and fluidodynamics : with applications to reservoir engineering

Bibliographic Information

Geomechanics and fluidodynamics : with applications to reservoir engineering

by Victor N. Nikolaevskiy

(Theory and applications of transport in porous media, v. 8)

Kluwer Academic Publishers, c1996

Available at  / 12 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 329-339) and index

Description and Table of Contents

Description

This monograph is based on subsurface hydrodynamics and applied geomechanics and places them in a unifying framework. It focuses on the understanding of physical and mechanical properties of geomaterials by presenting mathematical models of deformation and fracture with related experiments.

Table of Contents

Preface. 1: Deformation and fracture of geomaterials. 1.1 Principles of continuum mechanics. 1.2. Thermodynamics and rheology of geomaterials. 1.3. Dilatant elasto-plasticity of geomaterials. 1.4. Particle rotation effects in granulated materials. 1.5. Brittle fracturing of rocks. 2: Mechanics of saturated geostratum. 2.1. Interpenetrating continua. 2.2. Microstructure and permeability. 2.3. Dynamic poro-elasticity. 2.4. Pore pressure and induced deformation of saturated strata. 2.5. Hydrofailure and hydrofracturing of rocks. 3: Hydrodynamics of reservoirs. 3.1. Basic nonstationary flows of a homogeneous fluid. 3.2. Stationary flows and well spacing. 3.3. Two-phase flows in reservoirs. 3.4. Flows in fractured reservoirs. 3.5. Filter-convective diffusion. 4: Complicated phenomena in reservoirs. 4.1. Miscible and gas-condensate flows. 4.2. Permafrost and gas-hydrate mechanics. 4.3. Electrokinetic effects. 4.4. Physical measurements in wells. 4.5. Rupture in dilating geomaterials. 5: Explosions and seismics in a geostratum. 5.1. Elementary theory of underground explosion. 5.2. Fronts and evolution of seismic waves. 5.3. Seismics of oil and gas reservoirs. 5.4. Microstructure transformation and wave generation. 5.5. Vibro-action at geomasses and reservoirs. 6: Structure and Rheology of the lithosphere. 6.1. Strength of geomaterials at depth. 6.2. Structure of the Earth crust. 6.3. The Mohorovichich boundary as impermeable sealing. 6.4. Fluid dynamics of the crust. 6.5. Superdeep drilling and well stability. 7: Geodynamical processes. 7.1. Global tectonic dynamics. 7.2. Basic concepts of earthquake mechanics. 7.3. Dilatancy and earthquake precursors. 7.4. Large-scale tectonic waves. 7.5 Fast tectonic changes and induced seismicity. Bibliography. Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top