Petrogenesis and experimental petrology of granitic rocks

書誌事項

Petrogenesis and experimental petrology of granitic rocks

Wilhelm Johannes, François Holtz

(Minerals and rocks, 22)

Springer, c1996

  • : gw
  • : us

大学図書館所蔵 件 / 19

この図書・雑誌をさがす

注記

Bibliography: p. [304]-328

Includes index

内容説明・目次

内容説明

There are several books emphasizing the mineralogical and petrological aspects of granites, but this book is the only one emphasizing the experimental aspects.

目次

1 Introduction and Geological Background.- 1.1 Granites and the Continental Crust.- 1.2 Chemical and Mineralogical Characteristics of Some Important Granite Types.- 1.3 Granite Magmatism and the Formation of the Continental Crust.- 1.4 Granite and Water.- 2 The Haplogranite System Qz-Ab-Or.- 2.1 Beginning of Melting in the System Qz-Ab-Or at $$ {a_{<!-- -->{<!-- -->{H_2}0}}} = 1 $$ and Composition of Initial Melts.- 2.1.1 Beginning of Melting.- 2.1.2 Composition of Initial H2O-Saturated Melts.- 2.1.3 Petrogenetic Implications.- 2.2 Dry Melting in the System Qz-Ab-Or.- 2.2.1 Beginning of Dry Melting.- 2.2.2 Composition of Dry Melts.- 2.3 Melting in Subsystems (Dry and at $$ {a_{<!-- -->{<!-- -->{H_2}0}}} = 1 $$).- 2.3.1 Beginning of Melting in Binary and Ternary Subsystems at $$ {a_{<!-- -->{<!-- -->{H_2}0}}} = 1 $$)1..- 2.3.2 Dry and H2O-Saturated Melting in the Subsystems Qz-Ab and Qz-Or.- 2.3.3 Eutectic Compositions of the Subsystems Qz-Ab and Qz-Or.- 2.3.4 The System Ab-Or-H2O.- 2.4 Beginning of Melting at Ab-H20-CO2.- 2.4.1 Beginning of Melting in the Subsystem Ab-H2O-CO2.- 2.4.2 Beginning of Melting in the Subsystem Qz-H2O-CO2.- 2.4.3 Beginning of Melting in the Subsystem Qz-Or-H2O-CO2.- 2.4.4 Beginning of Melting in the System Qz-Ab-Or-H2O-CO2.- 2.5 Liquidus Phase Relationships.- 2.5.1 Phase Relationships at $$ {a_{<!-- -->{<!-- -->{H_2}0}}} = 1 $$.- 2.5.2 Phase Relationships at $$ a_{H_2 O} < 1 $$.- 2.5.3 Composition of H2O-Undersaturated elts.- 2.5.4 Minimum Water Contents of Haplogranitic Melts.- 2.5.5 Liquidus Curves of the Haplogranite System.- 2.5.6 Liquidus Curves of a Muscovite-Granite.- 2.5.7 Water and Melt Content Relationship.- 3 Properties of Hydrous Haplogranitic Melts.- 3.1 Water Solubility.- 3.1.1 Determination of H2O Solubility and Precision of the Data.- 3.1.2 Pressure Dependence of H2O Solubility.- 3.1.3 Compositional Dependence of H2O Solubility for Qz, Ab, Or, and Binary Compositions.- 3.1.4 Compositional Dependence of H2O Solubility for Qz-Ab-Or Compositions.- 3.1.5 Temperature Dependence of H2O Solubility.- 3.1.6 Applications.- 3.2 Water Speciation in Aluminosilicate Melts, Models for Incorporation Mechanisms of Water and Implications.- 3.2.1 Burnham's Model for Incorporation of Water.- 3.2.2 Molecular Water and Hydroxyl Groups.- 3.2.3 The Role of the Charge-Balancing Cation in Albite and Haplogranite Melts.- 3.2.4 Implications for the Properties of Granitic Melts.- 3.3 Viscosity and Rheological Properties of Granitic Melts and Magmas.- 3.3.1 Dry Melts.- 3.3.2 Experimental Viscosity Data in Hydrous Melts.- 3.3.3 Comparison of Experimental and Calculated Viscosity Data.- 3.3.4 The Effect of Crystals and Bubbles on the Viscosity of Magmas.- 3.3.5 Implications for Natural Magmatic Systems.- 3.4 Density of Hydrous Granitic Liquids.- 3.4.1 Experimental Data.- 3.4.2 Implications.- 3.5 Diffusion of Major Elements and Water in Aluminosilicate Melts.- 3.5.1 Diffusion of Cations in Dry Melts and Glasses.- 3.5.2 Effect of Water on the Diffusion of Major Elements in Melts.- 3.5.3 Diffusivity of Water in Granitic Melts.- 3.5.4 Implications.- 3.6 Properties of Ascending Hydrous Magmas.- 3.6.1 Ascent of Chemically Closed Magmatic Systems.- 3.6.2 Adiabatic Ascent.- 3.6.3 Crystal Fractionation During Ascent.- 3.6.4 Role of Physical Properties of Granitoid Magmas on Transport Mechanisms (Dike vs. Diapir).- 4 Effects of Additional Aluminum and Minor Components in the System Qz-Ab-Or.- 4.1 Phase Relations in the System Qz-Ab-Or-Al2O3.- 4.1.1 Effect of Alumina at H2O -Saturated Conditions.- 4.1.2 Effect of Alumina at H2O -Undersaturated Conditions.- 4.1.3 Petrogenetic Implications.- 4.2 Effect of Alumina on Solubility of H2O in the System Qz-Ab-Or- Al2O3.- 4.2.1 Experimental Data.- 4.2.2 Petrogenetic Implications.- 4.3 Effect of Phosphorus and Solubility of Accessory Minerals in Granitic Melts.- 4.3.1 Phase Relations in the Granitic System.- 4.3.2 P2O5 Contents and Solubility of Apatite in Peraluminous and Ca-Bearing Melts.- 4.3.3 Solubility of Monazite in Granitic Melts.- 4.3.4 Solubility of Other Accessory Minerals.- 4.3.5 Applications.- 4.4 Effect of Fluorine.- 4.4.1 Effect on Phase Relations.- 4.4.2 Effect on H2O Solubility.- 4.4.3 Viscosity and Density.- 4.4.4 Solubility of F in Granitic Melts.- 4.4.5 Implications.- 4.5 Effect of Boron.- 4.5.1 Effect on Phase Relations.- 4.5.2 Effect on H2O Solubility.- 4.5.3 Viscosity and Density of Dry Melts.- 4.5.4 Solubility of Boron and Tourmaline Stability in Granitic Melts.- 4.5.5 Implications.- 4.6 Effect of Lithium.- 4.7 Contribution of Experimental Petrology to Case Studies of Peraluminous Leucogranites.- 4.7.1 The Harney Peak Leucogranite.- 4.7.2 The Manaslu and Gangotri Leucogranites.- 4.7.3 Conclusions and Limitations of the Experimental Studies..- 5 Fe and Mg in Granitic Melts.- 5.1 The Role and Control of $$ {f_{<!-- -->{<!-- -->{O_2}}}} $$.- 5.1.1Control by Solid Buffers and Problems.- 5.1.2 The Shaw Membrane Technique.- 5.2 Phase Equilibria Involving Ferromagnesian Minerals and Melt.- 5.3 Magnesium Content of Granitic Melts.- 5.3.1 Fe-Free Granitic Melts.- 5.3.2 Fe-Mg-Bearing Granitic Melts.- 5.4 Iron Content of Granitic Melts.- 5.5 Effect of Alumina on the Composition of Granitic Melts.- 5.6 Implications.- 6 The Tonalite System Qz-Ab-An.- 6.1. Onset of H2O-Saturated Melting in the Pure System Qz-Ab-An.- 6.2 Melting of Plagioclase, Kinetic Studies.- 6.2.1 Kinetic Studies in the Systems Ab-An and Ab-An-H2O.- 6.2.2 Kinetic Studies in the System Qz-Ab-An- H2O.- 6.2.3 Kinetic Studies in the System Qz-Ab-An-Al2O3-H2O.- 6.3 Phase Equilibria in the System Qz-Ab-An- H2O.- 6.3.1 The System Qz-Ab-An- H2O at 2 kbar.- 6.3.2 The System Qz-Ab-An- H2O at 5 kbar.- 6.3.3 Interpretation and Application of the Results.- 6.4 Phase Equilibria in the Peraluminous Tonalite System Qz-Ab-An-Al2O3-H2O.- 6.5 Formation of Tonalite in the Light of the Experimental Results.- 6.6 Experimental Investigations on Natural Tonalite.- 6.6.1 H2O -Saturated Melting Experiments.- 6.6.2 Dehydration Melting Experiments on Tonalite.- 6.6.3 Phase Relationships of Tonalite with Variable H2O Contents at High Pressure.- 6.7 Constraints on the Origin of Archean Tonalite.- 6.8 Relevance of the Experimental Results.- 7 The Granite System Qz-Ab-Or-An.- 7.1 Beginning of Melting (Water Saturated) in the System Qz-Ab-Or-An.- 7.2 Melting of Plagiocase in the System Qz-Ab-Or-An.- 7.2.1 Kinetic Studies in the System Qz-Ab-Or-An-Biotite.- 7.2.2 Distribution of Ab and An Between Melt and Coexisting Plagiocase.- 7.3 Hypersolidus Phase Relationships in the System Qz-Ab-Or-An.- 7.4 Kinetics of Subsolidus Reactions with Plagiocase.- 7.4.1 Application and Interpretation of the Results.- 8 Experiments with Natural Granites and Related Rocks.- 8.1 Early Investigations.- 8.2 Comparison of Results Obtained in Model Systems and Natural Rocks.- 8.3 Melting and Crystallization Experiments Performed at Water Saturation.- 8.3.1 Experimental Melting of Greywackes.- 8.3.2 Experimental Melting of Pelitic Compositions.- 8.3.3 Crystallization of an Obsidian.- 8.3.4 The Effect of Volatile Components Other than H2O on the Solidus Temperature.- 8.3.5 Low Pressure Melting, and Comparison of Granitic and Basaltic Solidus Curves.- 8.3.6 Melting of Granitic Rocks at High Pressures.- 8.4 Melting Experiments Performed at Water Undersaturation.- 8.4.1 Water-Undersaturated Melting in Runs with Water Added to the Solids.- 8.4.2 Water-Undersaturated Melting Controlled by H2O-CO2 Mixtures.- 8.4.3 Experimental Melting of and Crystallization of Tuffs and Rhyolitic Rocks Performed under Selected Conditions.- 8.5 Summary of Experimental Findings and Conclusion.- 9 Formation of Granitic Magmas by Dehydration Melting.- 9.1 General Remarks.- 9.2 Dehydration Melting of Muscovite-Bearing Mineral Assemblages.- 9.2.1 Muscovite and Muscovite+Quartz Subsolidus Stability.- 9.2.2 Solidus for Dehydration Melting of Quartz+Muscovite.- 9.2.3 Petrogenetic Importance of the Solidus for Dehydration Melting of Muscovite-Quartz Assemblages.- 9.2.4 Dehydration Melting of Muscovite-Quartz Assemblages in Multicomponent Systems.- 9.3 Dehydration Melting of Biotite-Bearing Mineral Assemblages.- 9.3.1 Solidus for Dehydration Melting of Biotite (Phlogopite) +Quartz.- 9.3.2 Dehydration Melting and Petrogenetic Implications, Early Ideas, and Results.- 9.3.3 Petrogenetic Grids and Phase Equilibria in High-Grade Pelitic Rocks.- 9.3.4 Dehydration Melting of Biotite-Bearing Metapelitic Assemblages.- 9.3.5 Summary of Experimental Results with Biotite-Bearing Mineral Assemblages.- 9.4 Dehydration Melting in Amphibolites.- 9.4.1 The Solidus for Dehydration Melting in Amphibolites.- 9.4.2 Composition of Partial Melts Generated by Dehydration Melting of Amphibolites.- 9.4.3 Summary of Experimental Results Obtained with Hornblende-Bearing Mineral Assemblages.- 9.5 Evolution of the Continental Crust by Dehydration Melting of Amphibolites and Tonalites.- Appendix: List of Abbreviations Used in the Text.- References.- Permission Statement.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA27765716
  • ISBN
    • 3540604162
    • 0387604162
  • LCCN
    95050592
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin ; Tokyo
  • ページ数/冊数
    xiii, 335 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ