The mathematics of deforming surfaces : based on the proceedings of a Conference on the Mathematics and Computation of Deforming Surfaces, organized by the Institute of Mathematics and its Applications and held at the University of Cambridge in December 1988
著者
書誌事項
The mathematics of deforming surfaces : based on the proceedings of a Conference on the Mathematics and Computation of Deforming Surfaces, organized by the Institute of Mathematics and its Applications and held at the University of Cambridge in December 1988
(The Institute of Mathematics and its Applications conference series, new ser.,
Clarendon Press, 1996
大学図書館所蔵 全12件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
The mathematics of deformable surfaces covers a wide range of mathematical ideas and techniques and has applications to all kinds of surfaces from those of textile fabrics, to sheet metal, the deformation of balloons, the shape of water waves and air bubbles in water, the shape of flame fronts and density interfaces in turbulent flows, and the effects of turbulent diffusion. The interesting variety of topics discussed included the following: Le M 'e haut 'e and Correc (France) considered the pressure loading and buckling of cyclindrical sheets, and showed how this can be modelled using LF-splines. Lloyd (UK) showed how the special characteristics of textiles can make it difficult to use conventional Finite Element techniques. Peregrine (Bristol) discusses a surface that is an interface between two regions with different physical properties, so that the shape is determined entirely by dynamical processes within two regions. The main section within the conference were: Modelling Deforming Surfaces, The Deformation of Notional Surfaces, and Techniques for Analysing Deforming Interfaces.
This book is intended for research mathematicians and engineers interested in the motion and deformation of surfaces such as changes in the shape of metals and fabrics, the shape of water waves, the effects of turbulent diffusion.
目次
1: Modelling Deforming Surfaces. 2: Modelling axisymmetric thin shells with LF-splines. 3: Approaches to modelling the mechanical properties of fabrics and the representation of fabrics as flexible surfaces using differential geometry. 4: The complex buckling of textile fabrics. 5: Stability of steep unsteady water waves. 6: Deforming surfaces and viscous sintering. 7: The Deformation of Notional Surfaces:. 8: Contour dynamics/surgery. 9: Stretching of line and surface elements in random velocity fields. 10: Moving surfaces in turbulent flows. 11: Techniques for Analysing Deforming Interfaces:. 12: Fourier descriptions for measuring bubble motion and deformation. 13: Extraction of spatial statistics from experimentally visualised cross-sections of a turbulent flame. 14: Geometrical observations of turbulent density interfaces
「Nielsen BookData」 より