Geometry of matrices
著者
書誌事項
Geometry of matrices
World Scientific, c1996
大学図書館所蔵 全34件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"In memory of Professor L.K. Hua (1910-1985)"
Includes bibliographical references and index
内容説明・目次
内容説明
The present monograph is a state-of-art survey of the geometry of matrices whose study was initiated by L K Hua in the forties. The geometry of rectangular matrices, of alternate matrices, of symmetric matrices, and of hermitian matrices over a division ring or a field are studied in detail. The author's recent results on geometry of symmetric matrices and of hermitian matrices are included. A chapter on linear algebra over a division ring and one on affine and projective geometry over a division ring are also included. The book is clearly written so that graduate students and third or fourth year undergraduate students in mathematics can read it without difficulty.
目次
- Part 1 Linear algebra over division rings: matrices over division rings
- matrix representations of subspaces
- systems of linear equations. Part 2 Affine geometry and projective geometry: affine spaces and affine groups
- projective spaces and projective groups
- one-dimensional projective geometry. Part 3 Geometry of rectangular matrices: the space of rectangular matrices
- proof of the fundamental theorem
- application to graph theory. Part 4 Geometry of alternate matrices: the space of alternate matrices
- maximal sets. Part 5 Geometry of symmetric matrices: the space of symmetric matrices
- proof of the fundamental theorem I-III. Part 6 Geometry of hermitian matrices: maximal sets of rank 1
- proof of the fundamental theorem (the case n is greater than or equal to 3)
- the maximal set of rank 2 (n=2)
- proof of the fundamental theorem (the case n=2)
- and others.
「Nielsen BookData」 より