Advanced concepts in adaptive signal processing
著者
書誌事項
Advanced concepts in adaptive signal processing
(The Kluwer international series in engineering and computer science, SECS 365 . VLSI,
Kluwer Academic Publishers, c1996
大学図書館所蔵 全21件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Although adaptive filtering and adaptive array processing began with research and development efforts in the late 1950's and early 1960's, it was not until the publication of the pioneering books by Honig and Messerschmitt in 1984 and Widrow and Stearns in 1985 that the field of adaptive signal processing began to emerge as a distinct discipline in its own right. Since 1984 many new books have been published on adaptive signal processing, which serve to define what we will refer to throughout this book as conventional adaptive signal processing. These books deal primarily with basic architectures and algorithms for adaptive filtering and adaptive array processing, with many of them emphasizing practical applications. Most of the existing textbooks on adaptive signal processing focus on finite impulse response (FIR) filter structures that are trained with strategies based on steepest descent optimization, or more precisely, the least mean square (LMS) approximation to steepest descent. While literally hundreds of archival research papers have been published that deal with more advanced adaptive filtering concepts, none of the current books attempt to treat these advanced concepts in a unified framework. The goal of this new book is to present a number of important, but not so well known, topics that currently exist scattered in the research literature. The book also documents some new results that have been conceived and developed through research conducted at the University of Illinois during the past five years.
目次
Preface. 1: Introduction and Background. 1.1. Common Adaptive Concepts from Different Disciplines. 1.2. Generic Applications of Adaptive Methods. 1.3. Performance Measures in Adaptive Systems. 1.4. The Minimum Mean Squared Error Solution. 1.5. Adaptive Algorithms for FIR Systems. 1.6. Adaptive Algorithms for IIR Systems. 1.7. New Horizons in Adaptive Signal Processing. 1.8. Notation and Conventions. 2: Advanced Algorithms for 1-D Adaptive Filtering. 2.2. Data- Reusing LMS Algorithms. 2.3. Orthogonalization by PR Modulation. 2.3. The Gauss-Newton Adaptive Filtering algorithm. 2.4. Block Adaptive IIR Filters Using the PCG Method. 3: Structures and Algorithms for Two-Dimensional Adaptive Signal Processing. 3.1. Applications of Two-Dimensional Adaptive Filtering. 3.2. Two- Dimensional FIR Adaptive Filtering. 3.3. Two-Dimensional IIR Adaptive Filters. 3.4. Two-Dimensional IIR Adaptive Filtering Experiments. 3.5. Uniqueness Characteristics of the 2-D IIR MSE Minimization. 4: Adaptive Fault Tolerance. 4.1. Application of AFT to FIR Adaptive Filters. 4.2. Adaptive Filter Structures. 4.3. A Simple Fault Tolerant FIR Adaptive Filter. 4.4. The Transform Domain FTAF. 4.5. The DFT-Based TDFTAF with the Conjugate Gradient. 4.6. Robust and Practical TDFTAFs. 4.7. Full Fault Tolerance Transforms. 4.8. Discussion. 5: Adaptive Polynomial Filters. 5.1. The Volterra Series. 5.2. Gradient Based Adaptive Volterra Filters. 5.3. RLSSecond-Order Volterra Adaptive Filter. 5.4. LS Lattice Second-Order Volterra Adaptive Filter. 5.5. QR-Based LS Lattice Second Order Volterra Filter. 5.6. The Adaptive Volterra Filter for Gaussian Signals. 5.7. Other Polynomial-Based Nonlinear Adaptive Filters. 5.8. Discussion. Appendix. Subject Index.
「Nielsen BookData」 より