Qualitative topics in integer linear programming
著者
書誌事項
Qualitative topics in integer linear programming
(Translations of mathematical monographs, v. 156)
American Mathematical Society, c1997
- タイトル別名
-
Качественные вопросы целочисленного линейного программирования
Kachestvennye voprosy t︠s︡elochislennogo lineĭnogo programmirovanii︠a︡
- 統一タイトル
-
Kachestvennye voprosy t︠s︡elochislennogo lineĭnogo programmirovanii︠a︡
大学図書館所蔵 件 / 全43件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 133-146)
内容説明・目次
内容説明
Integer solutions for systems of linear inequalities, equations, and congruences are considered along with the construction and theoretical analysis of integer programming algorithms. The complexity of algorithms is analyzed dependent upon two parameters: the dimension, and the maximal modulus of the coefficients describing the conditions of the problem. The analysis is based on a thorough treatment of the qualitative and quantitative aspects of integer programming, in particular on bounds obtained by the author for the number of extreme points. This permits progress in many cases in which the traditional approach - which regards complexity as a function only of the length of the input-leads to a negative result.
目次
Intersection of a convex polyhedral cone with the integer lattice A discrete analogue of the Farkas theorem, and the problem of aggregation of a system of linear integer equations Intersection of a convex polyhedral set with the integer lattice Cut methods in integer programming Complexity questions in integer linear programming Appendices Bibliography.
「Nielsen BookData」 より