Technologies for detection of DNA damage and mutations
著者
書誌事項
Technologies for detection of DNA damage and mutations
Plenum Press, c1996
大学図書館所蔵 件 / 全14件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Man-made carcinogens, natural genotoxic agents in the environment, as well as ionizing and ultraviolet radiation can damage DNA and are a constant threat to genome integrity. Throughout the evolution oflife, complex DNA repair systems have developed in all living organisms to cope with this damage. Unrepaired DNA lesions can promote genetic alterations (mutations) that may be linked to an altered phenotype, and, if growth-controlling genes are involved, these mutations can lead to cell transformation and the development of malignant tumors. Proto oncogenes and tumor suppressor genes may be critical targets for DNA damaging agents. In a number of animal model systems, correlations between exposure to a carcinogen, tumor develop ment, and genetic changes in tumor DNA have been established. To understand mutagenesis processes in more detail at the molecular level, we need to know the type and frequency of DNA adducts within cells, their distribution along genes and specific DNA sequences, as well as the rates at which they are repaired. We also need to know what types of mutations are produced and which gene positions are most prone to mutagenesis. This book provides a collection of techniques that are useful in mutagenesis research. The book is divided into three parts. In Part I, methods for DNA damage and repair analysis are provided.
目次
Technologies for Detection of DNA Damage: Microgel Electrophoresis of DNA from Individual Cells: Principles and Methodology (N.P. Singh). The Cytokinesisblock Micronucleus Technique (M. Fenech). Agarose Gel Electrophoresis for DNA Damage Analysis (R. Drouin et al.). 32ppostlabelling for Detection of DNA Adducts (R.C. Gupta). A Postlabelling Assay for Oxidative Damage (M. Weinfeld et al.). Technologies for Detection of Mutations: Heteroduplex Analysis (D. Glavac, M. Dean). Mutation Analysis by Denaturing Gradient Gel Electrophoresis (DGGE) (R. Fodde, M. Losekoot). Single Strand Conformation Polymorphism Analysis (T. Sekiya). Twodimensional Gene Scanning (D. Li, J. Vijg). Ligase Chain Reaction for the Detection of Specific DNA Sequences and Point Mutations (R.B. Wallace et al.). Mammalian Systems for Mutation Analysis: Detection and Characterization of Mutations in Mammalian Cells with the pSP189 Shuttle Vector System (M.M. Seidman). The HPRT Gene as a Model System for Mutation Analysis (V.M. Maher, J.J. McCormick). Bacteriophage Lambda and Plasmid lacZ Transgenic Mice for Studying Mutions in vivo (J. Vijg, G.R. Douglas). The Use of lacI Transgenic Mice in Genetic Toxicology (J.G. de Boer et al.). Genotypic Mutation Assay (RFLP/PCR) (F. Aguilar, P. Cerutti). 16 additional articles. Index.
「Nielsen BookData」 より