Mathematics of climate modelling
著者
書誌事項
Mathematics of climate modelling
Birkhäuser, c1997
並立書誌 全1件
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The present monograph is dedicated to a new branch of the theory of climate, which is titled by the authors, "Mathematical Theory of Climate. " The foundation of this branch is the investigation of climate models by the methods of the qUalitative theory of differential equa tions. In the Russian edition the book was named "Fundamentals of the Mathematical Theory of Climate. " Respecting the recommenda tions of Wayne Yuhasz (we are truly grateful to him for this advice), we named the English edition of the book "Mathematics of Climate Modelling. " This title appears to be more appropriate, since the con structive results of the theory are at present preliminary and have not been fully tested with experiments in climate modelling. This branch of science is yet developing and its practical results will be obtained only in the near future. Nevertheless, we want to keep the terminology which we have used in the introduction to the Russian edition of the book, since the authors hope that this term will be accepted by the scientific community for identification of a given branch of climate theory. On preparing the English edition, new ideas were established con necting some significant new research results obtained by the author. We are deeply grateful to G. Marchuk for continual encourage ment of this scientific enterprise and fruitful discussions, to our young colleagues A. Gorelov, E. Kazantsev, A. Gritsun, and A.
目次
1. Dynamical Systems. Attractors, Invariant Measures.- 1.1 Metric Spaces. Compactness.- 1.2 Dynamical Systems. Main Properties.- 1.3 Invariant Sets.- 1.4 Classification of Motions.- 1.5 Recurrence of Domains.- 1.6 Measure. Krylov-Bogolyubov Theorem.- 1.7 Dynamical Systems with Invariant Measure.- 1.8 Nonlinear Dissipative Systems.- 1.9 Inertial Manifolds of Dissipative Systems.- 2. Non-Autonomous Dissipative Systems, their Attractor and Averaging.- 2.1 Introduction.- 2.2 Processes and their Attractors. Kernel of Processes, Section of Kernel.- 2.3 Families of Processes and their Attractors.- 2.4 Family of Processes and Semigroups.- 2.5 Averaging of Nonlinear Dissipative Systems. Closeness between Attractors of Original and Averaged Systems.- 2.6 On Closeness of Solutions of Original and Averaged Nonlinear Dissipative Systems on Infinite Time Interval.- 3. Analysis of Barotropic Model.- 3.1. Existence of Global Attractor.- 3.2 Estimate of Dimension of Attractor.- 3.3 Statistical Solutions and Invariant Measures on Attractor.- 3.4 Estimate of Attractor Dimension with Respect to Orography.- 3.5 Galerkin Approximations.- 3.6 Existence of Inertial Manifold.- 4. Discretization of Systems Possessing Attractor.- 4.1 Discretization of Systems Possessing Inertial Manifolds.- 4.2 Time-Space Discretization of Systems Possessing Attractor.- 4.3 Globally Stable Difference Schemes for Barotropic Vorticity Equation.- 5. Numerical Study of Structure of Attractor Generated by Barotropic Equations on Sphere.- 5.1 Equations and Parameters of Model. Methods of Solving of Stationary and Nonstationary Problems.- 5.2 Statistical Stationary Solution and Stationary Points.- 5.3 Lyapunov Exponents and Attractor Dimension.- 5.4 Analysis of Analytical Estimates of Attractor Dimension of Barotropic Atmospheric Equations.- 6. Two-Layer Baroclinic Model.- 6.1 Two-Layer Baroclinic Model.- 6.2 Estimate of Attractor Dimension.- 6.3 Numerical Investigation of Attractor. Characteristics of Two-Layer Baroclinic Model.- 7. Investigation of Structure of Climate Attractors by Observed Data Series.- 7.1. Correlation Dimension of Attractor.- 7.2. Calculation of Lyapunov Exponents.- 7.3 Statistically Independent Degrees of Freedom and Attractor Dimension.- 8. Regimes of Atmosphere Circulation.- 8.1 Definition of Atmosphere Circulation Regimes.- 8.2 Dynamical Theory of Two-Regime Barotropic Circulation.- 8.3. Statistical Theory of Two-Regime Barotropic Circulation.- 8.4 S-Regimes of Atmosphere Circulation.- 9. Solvability of Ocean and Atmosphere Models.- 9.1 Introduction.- 9.2 Solvability of Ocean and Atmosphere Models in Bounded Domains.- 9.3 Solvability of Ocean and Atmosphere Models on Sphere in p-System of Coordinates.
「Nielsen BookData」 より