Theoretical problems in cavity nonlinear optics
Author(s)
Bibliographic Information
Theoretical problems in cavity nonlinear optics
(Cambridge studies in modern optics)
Cambridge University Press, 1997
Available at 13 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes index
Description and Table of Contents
Description
The scientific and technological importance of lasers has generated great interest in the field of cavity nonlinear optics. This book provides a thorough description of this subject in terms of modern dynamical systems theory. Throughout, the emphasis is on deriving analytical results and highlighting their physical significance. The early chapters introduce the physical models for active and passive cavities. In later chapters, these are applied to a variety of problems in laser theory, optical bistability and parametric oscillators. Subjects covered include scaling laws, Hopf bifurcations, passive Q-switching, and Turing instabilities. Several of the topics treated cannot be found in other books, including swept control parameter dynamics, laser stability, multimode rate equations, and antiphase dynamics. The book stresses the connections between theoretical work and actual experimental results, and will be of great interest to graduate students and researchers in theoretical physics, nonlinear optics, and laser physics.
Table of Contents
- Introduction
- 1. Reduction of the Maxwell-Schroedinger equations
- 2. Parameter swept across a steady bifurcation I
- 3. Parameter swept across a steady bifurcation II
- 4. Optical bistability: constant input
- 5. Optical bistability: variable input
- 6. Multimode optical bistability
- 7. Free running multimode lasers
- 8. Antiphase dynamics
- 9. Laser stability
- 10. Second harmonic generation
- 11. Saturable absorbers
- 12. Transverse effects in optical bistability.
by "Nielsen BookData"