Extensional constructs in intensional type theory
Author(s)
Bibliographic Information
Extensional constructs in intensional type theory
(CPHC/BCS distinguished dissertation series)
Springer, c1997
- hardback
Available at 17 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
hardbackHOF||16||197022738
Note
Includes index
Description and Table of Contents
Description
Extensional Constructs in Intensional Type Theory presents a novel approach to the treatment of equality in Martin-Loef type theory (a basis for important work in mechanised mathematics and program verification). Martin Hofmann attempts to reconcile the two different ways that type theories deal with identity types. The book will be of interest particularly to researchers with mainly theoretical interests and implementors of type theory based proof assistants, and also fourth year undergraduates who will find it useful as part of an advanced course on type theory.
Table of Contents
1. Introduction.- 1.1 Definitional and propositional equality.- 1.2 Extensional constructs.- 1.3 Method.- 1.3.1 The use of categorical models.- 1.3.2 Syntactic models.- 1.4 Applications.- 1.4.1 Application to machine-assisted theorem proving.- 1.5 Overview.- 2. Syntax and semantics of dependent types.- 2.1 Syntax for a core calculus.- 2.1.1 Raw syntax.- 2.1.2 Judgements.- 2.1.3 Notation.- 2.1.4 Derived rules and meta-theoretic properties.- 2.2 High-level syntax.- 2.2.1 Telescopes.- 2.2.2 Elements of telescopes and context morphisms.- 2.2.3 Definitions and substitution.- 2.3 Further type formers.- 2.3.1 Unit type.- 2.3.2 ?-types.- 2.3.3 Function and cartesian product types.- 2.3.4 The Calculus of Constructions.- 2.3.5 Universes.- 2.3.6 Quotient types.- 2.4 Abstract semantics of type theory.- 2.4.1 Syntactic categories with attributes.- 2.4.2 Type constructors.- 2.5 Interpreting the syntax.- 2.5.1 Partial interpretation.- 2.5.2 Soundness of the interpretation.- 2.6 Discussion and related work.- 3. Syntactic properties of propositional equality.- 3.1 Intensional type theory.- 3.1.1 Substitution.- 3.1.2 Uniqueness of identity.- 3.1.3 Functional extensionality.- 3.2 Extensional type theory.- 3.2.1 Comparison with Troelstra's presentation.- 3.2.2 Undecidability of extensional type theory.- 3.2.3 Interpreting extensional type theory in intensional type theory.- 3.2.4 An extension of TTI for which the interpretation in TTE is surjective.- 3.2.5 Conservativity of TTE over TTI.- 3.2.6 Discussion and extensions.- 3.2.7 Conservativity of quotient types and functional extensionality.- 3.3 Related work.- 4. Proof irrelevance and subset types.- 4.1 The refinement approach.- 4.2 The deliverables approach.- 4.3 The deliverables model.- 4.3.1 Contexts.- 4.3.2 Families of specifications.- 4.3.3 Sections of specifications (deliverables).- 4.4 Model checking with Lego.- 4.4.1 Records in Lego.- 4.4.2 Deliverables in Lego.- 4.5 Type formers in the model D.- 4.5.1 Dependent products.- 4.5.2 Dependent sums.- 4.5.3 Natural numbers.- 4.5.4 The type of propositions.- 4.5.5 Proof irrelevance.- 4.5.6 Universes.- 4.6 Subset types.- 4.6.1 Subset types without impredicativity.- 4.6.2 A non-standard rule for subset types.- 4.7 Reinterpretation of the equality judgement.- 4.8 Related work.- 5. Extensionality and quotient types.- 5.1 The setoid model.- 5.1.1 Contexts of setoids.- 5.1.2 Implementing the setoid model S0 in Lego.- 5.1.3 Type formers in the setoid model.- 5.1.4 Propositions.- 5.1.5 Quotient types.- 5.1.6 Interpretation of quotient types in S0.- 5.1.7 A choice operator for quotient types.- 5.1.8 Type dependency and universes.- 5.2 The groupoid model.- 5.2.1 Groupoids.- 5.2.2 Interpretation of type formers.- 5.2.3 Uniqueness of identity.- 5.2.4 Propositional equality as isomorphism.- 5.3 A dependent setoid model.- 5.3.1 Families of setoids.- 5.3.2 Dependent product.- 5.3.3 The identity type.- 5.3.4 Inductive types.- 5.3.5 Quotient types.- 5.4 Discussion and related work.- 6. Applications.- 6.1 Tarski's fixpoint theorem.- 6.1.1 Discussion.- 6.2 Streams in type theory.- 6.3 Category theory in type theory.- 6.3.1 Categories in S0.- 6.3.2 Categories in S1.- 6.3.3 Discussion.- 6.4 Encoding of the coproduct type.- 6.4.1 Development in the setoid models.- 6.5 Some basic constructions with quotient types.- 6.5.1 Canonical factorisation of a function.- 6.5.2 Some categorical properties of S0.- 6.5.3 Subsets and quotients.- 6.5.4 Saturated subsets.- 6.5.5 Iterated quotients.- 6.5.6 Quotients and products.- 6.5.7 Quotients and function spaces.- 6.6 ? is co-continuous-intensionally.- 6.6.1 Parametrised limits of ?-chains.- 6.6.2 Development in TTE.- 6.6.3 Development in TTI.- 7. Conclusions and further work.- A.1 Extensionality axioms.- A.2 Quotient types.- A.3 Further axioms.- Appendix B. Syntax.- Appendix C. A glossary of type theories.- Appendix D. Index of symbols.
by "Nielsen BookData"