Principles of data mining and knowledge discovery : First European Symposium, PKDD '97, Trondheim, Norway, June 24-27, 1997 : proceedings
著者
書誌事項
Principles of data mining and knowledge discovery : First European Symposium, PKDD '97, Trondheim, Norway, June 24-27, 1997 : proceedings
(Lecture notes in computer science, 1263 . Lecture notes in artificial intelligence)
Springer, c1997
大学図書館所蔵 全52件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book constitutes the refereed proceedings of the First European Symposium on Principles of Data Mining and Knowledge Discovery, PKDD '97, held in Trondheim, Norway, in June 1997.
The volume presents a total of 38 revised full papers together with abstracts of one invited talk and four tutorials. Among the topics covered are data and knowledge representation, statistical and probabilistic methods, logic-based approaches, man-machine interaction aspects, AI contributions, high performance computing support, machine learning, automated scientific discovery, quality assessment, and applications.
目次
- Knowledge discovery - A control theory perspective.- Modelling customer retention with Rough Data Models.- Share based measures for itemsets.- Parallel knowledge discovery using domain generalization graphs.- Rough set theory and rule induction techniques for discovery of attribute dependencies in medical information systems.- Logical calculi for knowledge discovery in databases.- Extraction of experts' decision process from clinical databases using rough set model.- Discovering of health risks and case-based forecasting of epidemics in a health surveillance system.- An algorithm for multi-relational discovery of subgroups.- Finding similar time series.- Exploration of document collections with self-organizing maps: A novel approach to similarity representation.- Pattern based browsing in document collections.- Induction of fuzzy characteristic rules.- Regression-based classification methods and their comparison with decision tree algorithms.- Attribute discovery and rough sets.- Generation of rules from incomplete information systems.- Knowledge discovery from software engineering data: Rough set analysis and its interaction with goal-oriented measurement.- Efficient multisplitting on numerical data.- SNOUT: An intelligent assistant for exploratory data analysis.- Exploratory analysis of biochemical processes using hybrid modeling methods.- Using signature files for querying time-series data.- A new and versatile method for association generation.- Bivariate decision trees.- Towards process-oriented tool support for knowledge discovery in databases.- A connectionist approach to structural similarity determination as a basis of clustering, classification and feature detection.- Searching for relational patterns in data.- Finding spatial clusters.- Interactive interpretation of hierarchical clustering.- The principle of transformation between efficiency and effectiveness: Towards a fair evaluation of the cost-effectiveness of KDD techniques.- Recognizing reliability of discovered knowledge.- Clustering techniques in biological sequence analysis.- TOAS intelligence mining
- analysis of natural language processing and computational linguistics.- Algorithms for constructing of decision trees.- Mining in the phrasal frontier.- Mining time series using rough sets - A case study.- Neural networks design: Rough set approach to continuous data.- On meta levels of an organized society of KDD agents.- Using neural network to extract knowledge from database.- Induction of strong feature subsets.- Rough sets for data mining and knowledge discovery.- Techniques and applications of KDD.- A tutorial introduction to high performance data mining.- Data mining in the telecommunications industry.
「Nielsen BookData」 より